EXPLORING THE EFFECTIVENESS OF Pseudomonas aeruginosa ISOLATES FOR BIOREMEDIATION OF CRUDE OIL-CONTAMINATED SOILS USING SOYBEAN HULL AS A BIOSTIMULANT: A FOCUS ON ETPH AND PAHs

  • Abdullahi Ajao Kwara State University, Malete
  • Jimoh-Hamza, O.K Department of Biological Sciences, Faculty of Natural Science, Al-hikmah University, Adewole, Ilorin, Nigeria.
Keywords: Bioremediation, Indigenous bacteria, Crude oil degradation, Soil pollution, Biosurfactant production

Abstract

The Speciated EPA-16 Polyaromatic Hydrocarbons (PAHs) in crude oil pose significant environmental and health risks due to their harmful properties. This study focused on indigenous bacteria capable of degrading Extractable Total Petroleum Hydrocarbons (ETPHs) and PAHs through a Nutrient-Amended Bioaugmentation Strategy (N-ABS). Crude oil-degrading bacteria were isolated from contaminated soil in Alakiri Community, Rivers State, Nigeria, leading to the identification of four Pseudomonas aeruginosa isolates (KUD1-4) via 16S rRNA gene sequencing. Bioremediation treatments, using both bacterial isolates and Soybean hull as a biostimulant, showed that P. aeruginosa KUD2 achieved the highest removal efficiencies of 96.59% for ETPHs and 80.00% for PAHs. This study underscores the potential of P. aeruginosa KUD2 and Soybean hull in remediating crude oil-contaminated soils.

References

Adebiyi, F. M. (2022). Air quality and management in petroleum refining industry: A review. Environmental Chemistry and Ecotoxicology, 4: 89-96. DOI: https://doi.org/10.1016/j.enceco.2022.02.001

Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A. & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. DOI: https://doi.org/10.3390/w13192660

Astuti, D.I., Purwasena, I.A., Putri, R.E. (2019). Screening and characterization of biosurfactant produced by Pseudoxanthomonas sp. G3 and its applicability for enhanced oil recovery. J. Petrol. Explor. Prod. Technol., 9 : 2279–2289. DOI: https://doi.org/10.1007/s13202-019-0619-8

Balogun, S. A., & Fagade, O. E. (2008). Screening for surface-active agent producing bacteria from diesel oil polluted tropical soil. World Appl. Sci. J., 3(6): 930-933.

Bhutia, M. O., Thapa, N. and Tamang, J.P. (2021). Molecular Characterization of Bacteria, Detection of Enterotoxin Genes, and Screening of Antibiotic Susceptibility Patterns in Traditionally Processed Meat Products of Sikkim, India. Front. Microbiol., 11:599-606. DOI: https://doi.org/10.3389/fmicb.2020.599606

Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource technology, 98(7): 1339-1345. DOI: https://doi.org/10.1016/j.biortech.2006.05.032

Dayamrita, K. K., Divya, K. K., Sreelakshmi, R., Arjun, E. J. and John, Febi. (2020). Isolation and characterization of hydrocarbon degrading bacteria from oil contaminated soil a Potential for biosurfactant assisted bioremediation, 2263. DOI: https://doi.org/10.1063/5.0017395

Ejaz, M, Zhao, B., Wang, X., Bashir,S., Haider, F. U., Aslam, Z., Khan, M.I., Shabaan, M., Naveed, M and Mustafa, A. (2021). "Isolation and Characterization of Oil-Degrading Enterobacter sp. from Naturally Hydrocarbon-Contaminated Soils and Their Potential Use against the Bioremediation of Crude Oil" Applied Sciences, 11: (8): 3504. DOI: https://doi.org/10.3390/app11083504

Gong, H., Li, Y., Bao, M., Lv, D., & Wang, Z. (2015). Petroleum hydrocarbon degrading bacteria associated with chitosan as effective particle-stabilizers for oil emulsification. Rsc Advances, 5(47): 37640-37647. DOI: https://doi.org/10.1039/C5RA01360G

Haider, F. U., Ejaz, M., Cheema, S. A., Khan, M. I., Zhao, B., Liqun, C., ... & Mustafa, A. (2021). Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research, 197: 111031. DOI: https://doi.org/10.1016/j.envres.2021.111031

Ijah, U. J. J., & Ukpe, L. I. (1992). Biodegradation of crude oil by Bacillus strains 28A and 61B isolated from oil spilled soil. Waste management, 12(1) :55-60. DOI: https://doi.org/10.1016/0956-053X(92)90009-8

Ijah, U. J. J., Auta, S. H. and Olanrewaju. R. K. (2013). Biostimulation of Crude Oil Contaminated Soil Using Soybean Waste. Advanced Science Focus, 1(1–7): 2013. DOI: https://doi.org/10.1166/asfo.2013.1052

Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V., & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249. DOI: https://doi.org/10.1016/j.petlm.2018.03.007

Liu, S., Sun, R., Cai, M., Kong, Y., Gao, Y., Zhang, T., ... & Huang, G. (2022). Petroleum spill bioremediation by an indigenous constructed bacterial consortium in marine environments. Ecotoxicology and Environmental Safety, 241: 113769. DOI: https://doi.org/10.1016/j.ecoenv.2022.113769

Margesin, R., Labbe, D., Schinner, F., Greer, C. W., & Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Applied and environmental microbiology, 69(6): 3085-3092. DOI: https://doi.org/10.1128/AEM.69.6.3085-3092.2003

Mishra, B., Varjani, S., Kumar, G., Awasthi, M. K., Awasthi, S. K., Sindhu, R., ... & Zhang, Z. (2021). Microbial approaches for remediation of pollutants: innovations, future outlook, and challenges. Energy & Environment, 32(6): 1029-1058. DOI: https://doi.org/10.1177/0958305X19896781

Odukoya, J., Lambert, R., & Sakrabani, R. (2019). Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A review. Horticulturae, 5(2): 47. DOI: https://doi.org/10.3390/horticulturae5020047

Orodu, V. E., & Benson, O. (2023). Comparative Analysis of Nitrates, Sulphates and Phosphates Levels in Soil from Selected Farmlands in Kaiama and Imiringi in Bayelsa State, Nigeria. International Research Journal of Pure and Applied Chemistry, 24(5): 24-33. DOI: https://doi.org/10.9734/irjpac/2023/v24i5822

Patowary, K., Patowary, R., Kalita, M. C. and Deka, S. (2017). Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon. Front. Microbiol., 8:279. DOI: https://doi.org/10.3389/fmicb.2017.00279

Raj, A., Kumar, A., & Dames, J. F. (2021). Tapping the role of microbial biosurfactants in pesticide remediation: an eco-friendly approach for environmental sustainability. Frontiers in Microbiology, 12: 791723. DOI: https://doi.org/10.3389/fmicb.2021.791723

Sah, D., Rai, J. P. N., Ghosh, A., & Chakraborty, M. (2022). A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech, 12(9), 218. DOI: https://doi.org/10.1007/s13205-022-03277-1

Shaheen, M. E., Tawfik, W., Mankoula, A. F., Gagnon, J. E., Fryer, B. J., & El-Mekawy, F. (2021). Determination of heavy metal content and pollution indices in the agricultural soils using laser ablation inductively coupled plasma mass spectrometry. Environmental Science and Pollution Research, 28: 36039-36052. DOI: https://doi.org/10.1007/s11356-021-13215-y

Smith, J. L., & Doran, J. W. (1997). Measurement and use of pH and electrical conductivity for soil quality analysis. Methods for assessing soil quality, 49: 169-185. DOI: https://doi.org/10.2136/sssaspecpub49.c10

Sui, X., Wang, X., Li, Y., & Ji, H. (2021). Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability, 13(16): 9267. DOI: https://doi.org/10.3390/su13169267

Varjani, S., Upasani, V. N., & Pandey, A. (2020). Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Science of the Total Environment, 737: 139766. DOI: https://doi.org/10.1016/j.scitotenv.2020.139766

Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., …& Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in microbiology, 9: 2885. DOI: https://doi.org/10.3389/fmicb.2018.02885

Zapata-Peñasco, I., Avelino-Jiménez, I. A., Mendoza-Pérez, J., Guevara, M. V., de Guevara, M. G. L., Valadez-Martínez, M., . & Fonseca-Campos, J. (2024). Environmental stressor assessment of hydrocarbonoclastic bacteria biofilms from a marine oil spill. Biotechnology Reports, 42: e00834. DOI: https://doi.org/10.1016/j.btre.2024.e00834

Zargar, A. N., Mishra, S., Kumar, M. and Srivastava, P. (2022). Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100 PLoS ONE 17(4): e0264202. DOI: https://doi.org/10.1371/journal.pone.0264202

Zhao, N. L., Zhu, Z. Q., Feng, H. Z., Song, Y. J., Huang, Q., Mou, X. Y., ... & Bao, R. (2023). Host-derived peptide signals regulate Pseudomonas aeruginosa virulence stress via the ParRS and CprRS two-component systems. Journal of Hazardous Materials: 460, 132512 DOI: https://doi.org/10.1016/j.jhazmat.2023.132512

Published
2024-08-29
How to Cite
AjaoA., & Jimoh-HamzaO. K. (2024). EXPLORING THE EFFECTIVENESS OF Pseudomonas aeruginosa ISOLATES FOR BIOREMEDIATION OF CRUDE OIL-CONTAMINATED SOILS USING SOYBEAN HULL AS A BIOSTIMULANT: A FOCUS ON ETPH AND PAHs. FUDMA JOURNAL OF SCIENCES, 8(4), 296 - 302. https://doi.org/10.33003/fjs-2024-0804-2575