UTILIZING A FUSION OF MACHINE LEARNING TECHNIQUES FOR DIABETES MELLITUS SUBTYPES CLASSIFICATION AND IDENTIFICATION
Abstract
Diabetes Mellitus (DM) is one of the most common health challenges in the world we live in today. It is a deadly disease which prevents the body from making enough insulin. Diabetes Type1 and Type2 are the two major types, which have some similarity in symptoms. Identifying Diabetic Patients with respect to type plays a very significant role in the management process. Misdiagnosis of these types leads to serious impediments. Research shows that the overlapping nature of features contributed to the difficulty in identifying the types and the classification into sub-types. This is still an area of concern (Hassan, et al, 2020; Albahli, 2020). In this research, we proposed a method of Support Vector Machine (SVM) and Random Forest Tree (RFT) for the classification of Diabetes sub-types. To reduce the dimensions of the feature set, the Principal Component Analysis (PCA) and Logistic Regression (LR) were used. For effective research, data is sourced from the Center for Endocrinology and Diabetes-Al-Kindy Teaching Hospital and Medical City Hospital's public laboratory Dataset to ensure wide coverage. The dataset consists of 834 patient records with eight features and an output column labelled "Type I" or "Type II." This study conducted the experiment using Python, and the results show that the hybrid model outperformed the other prediction methods.
References
Abaker, A. A., & Saeed, F. A. (2021). A comparative analysis of machine learning algorithms to build a predictive model for detecting diabetes complications. Informatica, 45(1).
Ade-Ojo, Toluwani (2018). Development of an intelligent decision support system for prompt diagnosis of Ebola and Lassa fever disease (Doctoral dissertation, Federal University Oye- Ekiti).
Agliata, A., Giordano, D., Bardozzo, F., Bottiglieri, S., Facchiano, A., & Tagliaferri, R. (2023). Machine learning as a support for the diagnosis of type 2 diabetes. International Journal of Molecular Sciences, 24(7), 6775.
Ahamed, B. S., Arya, M. S., Sangeetha, S. K. B., & Auxilia Osvin, N. V. (2022). Diabetes Mellitus Disease Prediction and Type Classification Involving Predictive Modeling Using Machine Learning Techniques and Classifiers. Applied Computational Intelligence and Soft Computing.
Ahuja, R., Sharma, S. C., & Ali, M. (2019). A Diabetic Disease Prediction Model Based on Classification Algorithms. Annals of Emerging Technologies in Computing (AETiC), 3(3).
Albahli, S. (2020). Type 2 machine learning: an effective hybrid prediction model for early type 2 diabetes detection. Journal of Medical Imaging and Health Informatics, 10(5), 1069-1075.
Amoo, A. O., Oyegoke, T. O., Balogun, J. A., & Bamidele, S. A. (2020). Survival Model for Diabetes Mellitus Patient Receiving Treatm. International Journal of Computers, 5.
Annamalai, R., & Nedunchelian, R. (2021). Diabetes mellitus prediction and severity level estimation using OWDANN algorithm. Computational Intelligence and Neuroscience, 2021.
Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications, 35(22), 16157-16173.
Chowdary, P. B. K., & Kumar, R. U. (2021). An Enhanced NAÏVE BAYES Classification Algorithm to Predict Type II Diabetes. Journal of Engineering Science and Technology, 16(4), 2927-2937.
Contreras, I., Bertachi, A., Biagi, L., Oviedo, S., Ramkissoon, C., & Vehi, J. (2020). Artificial intelligence-based decision support systems for diabetes. In Artificial Intelligence in Precision Health (pp. 329-357). Academic Press.
Dash, S., Shakyawar, S. K., Sharma, M., and Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. J. Big Data 6, 54. doi: 10.1186/s40537-019-0217-0
Edla, D. R., & Cheruku, R. (2017). Diabetes-finder: A bat optimized classification system for type-2 diabetes. Procedia Computer Science, 115, 235–242. doi:10.1016/j.procs.2017.09.130
Emmanuel, G., Hungilo, G. G., & Emanuel, A. W. R. (2021, March). Performance evaluation of machine learning classification techniques for Diabetes disease. In IOP Conference Series: Materials Science and Engineering (Vol. 1098, No. 5, p. 052082). IOP Publishing.
Ganie, S. M., Malik, M. B., & Arif, T. (2022). Machine Learning Techniques for Diagnosis of Type 2 Diabetes Using Lifestyle Data. In International Conference on Innovative Computing and Communications (pp. 487-497). Springer, Singapore.
Han, W., Shengqi, Y., Zhangqin, H., Jian, H., & Xiaovi, W. (2018). Type 2 Diabetes Mellitus Prediction Model Based on Data MIning . Informatics in Medicine Unlocked 10, 100-107.
Haritha, R., Babu, D. S., & Sammulal, P. (2018). A Hybrid Approach for Prediction of Type-1 and Type-2 Diabetes using Firefly and Cuckoo Search Algorithms. International Journal of Applied Engineering Research: IJAER, 13(2), 896–907.
Hassan, A. S., Malaserene, I., & Leema, A. A. (2020). Diabetes Mellitus Prediction using Classification Techniques. Int. J. Innov. Technol. Explor. Eng, 9(5), 2080-2084.
Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access, 8, 76516-76531.
Hussain, A., & Naaz, S. (2020). Prediction of Diabetes Mellitus: Comparative Study of Various Machine Learning Models. In International Conference on Innovative Computing and Communications (pp. 103-115). Springer, Singapore.
Iparraguirre-Villanueva, O., Espinola-Linares, K., Flores Castañeda, R. O., & Cabanillas-Carbonell, M. (2023). Application of machine learning models for early detection and accurate classification of type 2 diabetes. Diagnostics, 13(14), 2383.
Ishaq, F.S., Muhammad, L.J., Yahaya, B.Z and Atomsa, Y (2018) Data Mining Driven Models for Diagnosis of diabetes Mellitus: A Survey. Indian Journal of Science and Technology. Vol.11 (42). pp 1-9.
Jiby, T. C. (2021) A Study on Various Machine Learning Classification Algorithms for Diabetes Prediction. International Journal of Engineering Research & Technology (IJERT), 10(8). 425-427.
Kangra, K., & Singh, J. (2023). Comparative analysis of predictive machine learning algorithms for diabetes mellitus. Bulletin of Electrical Engineering and Informatics, 12(3), 1728-1737.
Kibria, H. B., Nahiduzzaman, M., Goni, M. O. F., Ahsan, M., & Haider, J. (2022). An ensemble approach for the prediction of diabetes mellitus using a soft voting classifier with an explainable AI. Sensors, 22(19), 7268.
Korzun, D.G. (2017) Internet of things meets mobile health systems in smart spaces: An overview. In Internet ofThings and Big Data Technologies for Next Generation Healthcare; Springer: Cham, Switzerland,pp. 111–129.
Krishnamoorthi, R., Joshi, S., Almarzouki, H. Z., Shukla, P. K., Rizwan, A., Kalpana, C., & Tiwari, B. (2022). A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques. Journal of Healthcare Engineering, 2022.
Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 40-46.
Laila, U. E., Mahboob, K., Khan, A. W., Khan, F., & Taekeun, W. (2022). An ensemble approach to predict early-stage diabetes risk using machine learning: An empirical study. Sensors, 22(14), 5247.
Lican, H., & Chuncheng, L. (2018). Intelligent Diagnosis of Diabetes Based on Information Gain and Deep Neural Network. Proceeding of CCIS2018.
Maniruzzaman, M., Kumar, N., Abedin, M. M., Islam, M. S., Suri, H. S., El-Baz, A. S., & Suri, J. S. (2017). Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Computer methods and programs in biomedicine, 152, 23-34.
Manu, G., Neil, D. R., Adrian, K. D., Jennifer, S., & Moi, H. Y. (2017). DFUNet: Covolutional Neural Networks for Diabetic Foot Ulcer Classification. arXiv:1711.10448v2 [cs.CV].
Morris, A.H (2019). “Decision Support and Safety of Clinical Environments”. British Medical Journal. Vol. 11(1).pp:69-75. https://dx.doi.org/10.1136/qhc-11.1.69. Epidemiology and Community Health.
Muhammad, L. J., Algehyne, E. A., & Usman, S. S. (2020). Predictive supervised machine learning models for diabetes mellitus. SN Computer Science, 1(5), 1-10.
Nagaraj, P., & Deepalakshmi, P. (2021). Diabetes Prediction Using Enhanced SVM and Deep Neural Network Learning Techniques: An Algorithmic Approach for Early Screening of Diabetes. International Journal of Healthcare Information Systems and Informatics (IJHISI), 16(4), 1-20.
Nibareke, T., and Laassiri, J. (2020). Using big data-machine learning models for diabetes prediction and flight delays analytics. J. Big Data 7, 78. doi: 10.1186/s40537-020-00355-0
Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: a review of current trends. Oman medical journal, 27(4), 269.
Padma,T.,Uma,N.M., R, J.G. (2018). A Survey on Classification and Prediction Techniques in Data Mining for Diabetes Mellitus. International Journal of Trend In Scientific Research and Development (IJTSRD), 496-504.
Patil, R., & Tamane, S. (2018). A comparative analysis on the evaluation of classification algorithms in the prediction of diabetes. International Journal of Electrical and Computer Engineering, 8(5), 3966.
Pavate, A., Nerurkar, P., Ansari, N., & Bansode, R. (2019). Early prediction of five major complications ascends in diabetes mellitus using fuzzy logic. In Soft Computing in Data Analytics (pp. 759-768). Springer, Singapore.
Pekel, E., & ÖZCAN, T. (2018). Diagnosis of Diabetes Mellitus using Statistical Methods and Machine Learning Algorithms. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, 36(4).
Perveen, S., Shahbaz, M., Keshavjee, K., & Guergachi, A. (2019). Metabolic syndrome and development of diabetes mellitus: Predictive modeling based on machine learning techniques. IEEE Access. IEEE, 7, 1365–1375. doi:10.1109/ACCESS.2018.2884249
Peter, S. (2014). An Analytical Study On Early Diagnosis and Classification of Diabetes Mellitus. Bonfring International Journal of Data Mining.
Pethunachiyar, G. A. (2020, January). Classification Of Diabetes Patients Using Kernel Based Support Vector Machines. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-4). IEEE.
Qunan, Z., Qu, K., Yamei, L., Dehui, Y., Ying, J., & Hua, T. (2018). Predicting Diabetes Mellitus with Machine Learning Techniques. Frontiers in Genetics.
Rajamani, S., & Sasikala, S. (2023). Artificial Intelligence Approach for Diabetic Retinopathy Severity Detection. Informatica, 46(8).
Raj, R. S., Sanjay, D. S., Kusuma, M., & Sampath, S. (2019). Comparison of support vector machine and Naive Bayes classifiers for predicting diabetes. In 2019 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE) (pp. 41-45). IEEE.
Resul T.I, Abdulkadir (2008), “Effective diagnosis of heart disease through neural networks ensemble”. An International Journal ELSEVIER Vol.(36). pp: 7675-7680.
Rodrigues, J. and Compte, S. (2016) Health Level In e-Health Systems. Theory and Technical Applications; Elsevier: Amsterdam, the Netherlands. 21–31.
Sarda-Espinosa, A., Subbiah, S., & Bartz-Beielstein, T. (2017). Conditional inference trees for knowledge extraction from motor health condition data. Engineering Applications of Artificial Intelligence, 62, 26-37.
Saxena, R., Sharma, S. K., & Gupta, M. (2021). Analysis of machine learning algorithms in diabetes mellitus prediction. In Journal of Physics: Conference Series (Vol. 1921, No. 1, p. 012073). IOP Publishing.
Shuja, M., Mittal, S. and Zaman, M (2019) Diabetes Mellitus and Data Mining Techniques: A survey. International Journal of Computer Sciences and Engineering. Vol. 7(1). pp: 2347-2693
Sisodia, D.and Sisodia, D. S. (2018) Prediction of Diabetes using Classification Algorithms.
International Conference on Computational Intelligence and Data Science (ICCIDS 2018); Elsevier: Raipur, India. 132 pp.1578-1585
Sivakumar, S., Venkataraman, S., & Bwatiramba, A. (2020). Classification Algorithm in Predicting the Diabetes in Early Stages. Journal of Computational Science, 16(10), 1417–1422. doi:10.3844/jcssp.2020.1417.1422
Sneha, N., & Gangil, T. (2019). Analysis of diabetes mellitus for early prediction using optimal features selection. Journal of Big Data, 6(1), 13.
Srivastava, A. K., Kumar, Y., & Singh, P. K. (2020). A Rule-Based Monitoring System for Accurate Prediction of Diabetes: Monitoring System for Diabetes. International Journal of E-Health and Medical Communications, 11(3), 32–53.
WorldHealth Statistics 2017: MonitoringHealth for the SDGs;WorldHealthOrganization: Geneva, Switzerland, 2017.
Yuvaraj, N., & SriPreethaa, K. R. (2019). Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Cluster Computing, 22(1), 1-9.
Zhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17, 100179.
Zou, Q., Qu, K., Luo, Y.,Yin, D., Ju, Y. and Tang, H (2018). Predicting Diabetes Mellitus with Machine Learning Techniques. Fronties in Genetics. Vol. 9 (515).
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences