ADVANCEMENTS AND INNOVATIONS IN PM2.5 MONITORING: A COMPREHENSIVE REVIEW OF EMERGING TECHNOLOGIES

  • Gregory E. Onaiwu
  • Nneka Joy Ayidu
Keywords: PM2.5 pollution, Air quality monitoring, Emerging technologies, Environmental policy, Public health

Abstract

This comprehensive review examines the evolving landscape of PM2.5 monitoring, emphasizing its critical role in environmental chemistry, public health and electrical/electronic engineering. Traditional methods, including manual sampling, gravimetric analysis, and the Federal Reference Method (FRM), have long been relied upon for PM2.5 measurement but are hindered by limitations in spatial coverage, temporal resolution, and cost. In response, emerging technologies such as wireless sensor networks, low-cost sensor technologies, remote sensing techniques, and machine learning algorithms offer promising solutions to overcome these challenges. Through an analysis of case studies and applications in various environmental settings, including urban areas, industrial zones, and indoor environments, the review highlights the effectiveness of monitoring networks in enhancing spatial and temporal resolution, as well as the need for community engagement and real-time monitoring solutions. Furthermore, technological innovations such as sensor fusion, data analytics, and artificial intelligence hold great promise for improving the accuracy, reliability, and accessibility of PM2.5 monitoring data. Regulatory agencies and policymakers play a crucial role in advancing PM2.5 monitoring by harmonizing monitoring standards, strengthening quality assurance measures, and developing evidence-based regulations to mitigate air pollution and protect public health. In conclusion, international cooperation and collaboration are essential for addressing transboundary air pollution and global environmental challenges. Regional monitoring networks and international agreements provide frameworks for data sharing, standardization of monitoring practices, and collaborative research efforts. To this end, stakeholders can leverage PM2.5 monitoring by adopting new technologies, improving data quality, and supporting evidence-based actions to safeguard public health, the environment, and sustainability

References

Abraham, S., & Li, X. (2014). A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Computer Science, 34, 165-171. https://doi.org/10.1016/j.procs.2014.07.090 DOI: https://doi.org/10.1016/j.procs.2014.07.090

Ahuja, T., Jain, V., & Gupta, S. (2016). Smart pollution monitoring for instituting aware travelling. International Journal of Computer Applications, 145(9), 4-11. https://doi.org/10.5120/ijca2016910747 DOI: https://doi.org/10.5120/ijca2016910747

Camarillo-Escobedo, R., Flores, J. L., Marin-Montoya, P., García-Torales, G., & Camarillo-Escobedo, J. M. (2022). Smart multi-sensor system for remote air quality monitoring using unmanned aerial vehicle and LoRaWAN. Sensors, 22(5), 1706. https://doi.org/10.3390/s22051706 DOI: https://doi.org/10.3390/s22051706

Dominici, F., Zanobetti, A., Schwartz, J., Braun, D., Sabath, B., & Wu, X. (2022). Assessing adverse health effects of long-term exposure to low levels of ambient air pollution: implementation of causal inference methods. Research Reports: Health Effects Institute, 2022. https://doi.org/10.1289/isee.2023.vo-020 DOI: https://doi.org/10.1289/isee.2023.VO-020

Evangelopoulos, D., Katsouyanni, K., Keogh, R., Samoli, E., Schwartz, J., Barratt, B., Zhang, H., & Walton, H. (2020). PM2.5 and NO2 exposure errors using proxy measures, including derived personal exposure from outdoor sources: A systematic review and meta-analysis.. Environment international, 137, 105500 . https://doi.org/10.1016/j.envint.2020.105500. DOI: https://doi.org/10.1016/j.envint.2020.105500

Fan, Z., Zhao, Y., Hu, B., Wang, L., Guo, Y., Tang, Z., ... & Mao, X. (2024). Enhancing urban real-time PM2.5 monitoring in street canyons by machine learning and computer vision technology. Sustainable Cities and Society, 100, 105009. https://doi.org/10.1016/j.scs.2023.105009 DOI: https://doi.org/10.1016/j.scs.2023.105009

Fascista, A. (2022). Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors, 22(5), 1824. https://doi.org/10.3390/s22051824 DOI: https://doi.org/10.3390/s22051824

Gordon, J., Bilsback, K., Fiddler, M., Pokhrel, R., Fischer, E., Pierce, J., & Bililign, S. (2023). The Effects of Trash, Residential Biofuel, and Open Biomass Burning Emissions on Local and Transported PM2.5 and Its Attributed Mortality in Africa. GeoHealth, 7. https://doi.org/10.1029/2022GH000673. DOI: https://doi.org/10.1029/2022GH000673

Gupta, G. P., & Jha, S. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony search-based metaheuristic techniques. Engineering Applications of Artificial Intelligence, 68, 101-109. https://doi.org/10.1016/j.engappai.2017.11.003 DOI: https://doi.org/10.1016/j.engappai.2017.11.003

Horender, S., Auderset, K., Quincey, P., Seeger, S., Skov, S. N., Dirscherl, K., ... & Vasilatou, K. (2021). Facility for production of ambient-like model aerosols (PALMA) in the laboratory: application in the intercomparison of automated PM monitors with the reference gravimetric method. Atmospheric Measurement Techniques, 14(2), 1225-1238. https://doi.org/10.5194/amt-14-1225-2021 DOI: https://doi.org/10.5194/amt-14-1225-2021

Huang, X., Tang, G., Zhang, J., Liu, B., Liu, C., Zhang, J., Công, L., Cheng, M., Yan, G., Gao, W., Wang, Y., & Wang, Y. (2021). Characteristics of PM2.5 pollution in Beijing after the improvement of air quality.. Journal of environmental sciences, 100, 1-10 .https://doi.org/10.1016/j.jes.2020.06.004. DOI: https://doi.org/10.1016/j.jes.2020.06.004

Johnston, J. D., Collingwood, S. C., LeCheminant, J. D., Peterson, N. E., Reynolds, P. R., Arroyo, J. A., ... & Beard, J. D. (2023). Personal Exposure to Fine Particulate Air Pollution among Brick Workers in Nepal. Atmosphere, 14(12), 1783. https://doi.org/10.3390/atmos14121783 DOI: https://doi.org/10.3390/atmos14121783

Khan, J., Sun, L., Tian, Y., Shi, G., & Feng, Y. (2021). Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources.. Journal of environmental sciences, 99, 196-209 . https://doi.org/10.1016/j.jes.2020.06.027. DOI: https://doi.org/10.1016/j.jes.2020.06.027

Kim, G. S., Son, Y. S., Lee, J. H., Kim, I. W., Kim, J. C., Oh, J. T., & Kim, H. (2016). Air pollution monitoring and control system for subway stations using environmental sensors. Journal of Sensors, 2016. https://doi.org/10.1155/2016/1865614 DOI: https://doi.org/10.1155/2016/1865614

Kothandaraman, D., Praveena, N., Varadarajkumar, K., Madhav Rao, B., Dhabliya, D., Satla, S., & Abera, W. (2022). Intelligent forecasting of air quality and pollution prediction using machine learning. Adsorption Science & Technology, 2022.

https://doi.org/10.1155/2022/5086622 DOI: https://doi.org/10.1155/2022/5086622

Li, S., Shafi, S., Zou, B., Liu, J., Xiong, Y., & Muhammad, B. (2022). PM2.5 Concentration Exposure over the Belt and Road Region from 2000 to 2020. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph19052852. DOI: https://doi.org/10.3390/ijerph19052852

Lung, S. C. C., Thi Hien, T., Cambaliza, M. O. L., Hlaing, O. M. T., Oanh, N. T. K., Latif, M. T., ... & Agustian, D. (2022). Research priorities of applying low-cost PM2. 5 sensors in Southeast asian countries. International Journal of Environmental Research and Public Health, 19(3), 1522. https://doi.org/10.3390/ijerph19031522 DOI: https://doi.org/10.3390/ijerph19031522

Lyu, R., Zhang, J., Pang, J., & Zhang, J. (2024). Modeling the impacts of 2D/3D urban structure on PM2.5 at high resolution by combining UAV multispectral/LiDAR measurements and multi-source remote sensing images. Journal of Cleaner Production, 437, 140613. https://doi.org/10.1016/j.jclepro.2024.140613 DOI: https://doi.org/10.1016/j.jclepro.2024.140613

Mansour, S., Nasser, N., Karim, L., & Ali, A. (2014, February). Wireless sensor network-based air quality monitoring system. In 2014 international conference on computing, networking and communications (ICNC) (pp. 545-550). IEEE. https://doi.org/10.1109/iccnc.2014.6785394 DOI: https://doi.org/10.1109/ICCNC.2014.6785394

McCarron, A., Semple, S., Braban, C. F., Swanson, V., Gillespie, C., & Price, H. D. (2023). Public engagement with air quality data: Using health behaviour change theory to support exposure-minimising behaviours. Journal of Exposure Science & Environmental Epidemiology, 33(3), 321-331. https://doi.org/10.1038/s41370-022-00449-2 DOI: https://doi.org/10.1038/s41370-022-00449-2

Mitreska Jovanovska, E., Batz, V., Lameski, P., Zdravevski, E., Herzog, M. A., & Trajkovik, V. (2023). Methods for urban Air Pollution measurement and forecasting: Challenges, opportunities, and solutions. Atmosphere, 14(9), 1441. https://doi.org/10.3390/atmos14091441 DOI: https://doi.org/10.3390/atmos14091441

Montrucchio, B., Giusto, E., Vakili, M. G., Quer, S., Ferrero, R., & Fornaro, C. (2020). A densely-deployed, high sampling rate, open-source air pollution monitoring WSN. IEEE Transactions on Vehicular Technology, 69(12), 15786-15799. https://doi.org/10.1109/tvt.2020.3035554 DOI: https://doi.org/10.1109/TVT.2020.3035554

Nabizadeh, R., Yousefian, F., Moghadam, V., & Hadei, M. (2019). Characteristics of cohort studies of long-term exposure to PM2.5: a systematic review. Environmental Science and Pollution Research, 26, 30755 - 30771. https://doi.org/10.1007/s11356-019-06382-6. DOI: https://doi.org/10.1007/s11356-019-06382-6

Onaiwu, G. E., & Eferavware, S. A. (2023). The potential health risk assessment of PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) on the human respiratory system within the ambient air of automobile workshops in Benin City, Nigeria. Air Quality, Atmosphere & Health, 16(12), 2431-2441. https://doi.org/10.1007/s11869-023-01415-z DOI: https://doi.org/10.1007/s11869-023-01415-z

Onaiwu, G. E., & Ifijen, I. H. (2024). PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs): quantification and source prediction studies in the ambient air of automobile workshop using the molecular diagnostic ratio. Asian Journal of Atmospheric Environment, 18(1), 6. https://doi.org/10.1007/s44273-024-00027-y DOI: https://doi.org/10.1007/s44273-024-00027-y

Onaiwu, G. E., & Okuo, J. M. (2023). Quantification of PM2. 5 Bound Polycyclic Aromatic Hydrocarbons (PAHs) and Modelling of Benzo [a] pyrene in the Ambient Air of Automobile Workshops in Benin City. Aerosol Science and Engineering, 7(3), 380-395. https://doi.org/10.21203/rs.3.rs-1727100/v1 DOI: https://doi.org/10.1007/s41810-023-00188-3

Patel, P., & Aggarwal, S. (2022). On the techniques and standards of particulate matter sampling. Journal of the Air & Waste Management Association, 72, 791 - 814. https://doi.org/10.1080/10962247.2022.2048129. DOI: https://doi.org/10.1080/10962247.2022.2048129

Pavani, M., & Rao, P. T. (2017). Urban air pollution monitoring using wireless sensor networks: A comprehensive review. International Journal of Communication Networks and Information Security, 9(3), 439-449. https://doi.org/10.17762/ijcnis.v9i3.2708 DOI: https://doi.org/10.17762/ijcnis.v9i3.2708

Prill, R., Karlsson, J., Ayeni, O. R., & Becker, R. (2021). Author guidelines for conducting systematic reviews and meta-analyses. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 2739-2744. https://doi.org/10.1007/s00167-021-06631-7 DOI: https://doi.org/10.1007/s00167-021-06631-7

Sassi, M. S. H., & Fourati, L. C. (2022). Comprehensive survey on air quality monitoring systems based on emerging computing and communication technologies. Computer Networks, 209, 108904. https://doi.org/10.1016/j.comnet.2022.108904 DOI: https://doi.org/10.1016/j.comnet.2022.108904

Published
2024-06-30
How to Cite
OnaiwuG. E., & AyiduN. J. (2024). ADVANCEMENTS AND INNOVATIONS IN PM2.5 MONITORING: A COMPREHENSIVE REVIEW OF EMERGING TECHNOLOGIES. FUDMA JOURNAL OF SCIENCES, 8(3), 243 - 255. https://doi.org/10.33003/fjs-2024-0803-2505