MATHEMATICAL MODEL OF LASSA FEVER TRANSMISSION DYNAMICS IN PREVALENT COMMUNITIES IN NIGERIA: THE CASE STUDY OF ONDO STATE
Abstract
With the current waive of global health problems and resurgence of many disease around the world. Cholera, Yellow fever,SARS-CoV-2, Monkey pox and Lassa fever resurgence in some West African countries, with Ondo State recording highest number of Lassa fever case in Nigeria. Prompting Nigeria Centre for
Disease Control (NCDC), Ondo State Primary Health (OSPH) expert and researchers begin ways to reduce transmission dynamics of Lassa Fever Disease (LFD). In this research, we developed and investigated using System of Ordinary Differential Equation (ODE) mathematical model of Lassa fever disease transmission dynamics, verifying positivity of system of equation as well as feasible region of the model. However, the Disease Free Equilibrium (DFE) of the model is computed and analysed with basic reproduction number $R_0$ of the model, showing the global stability of the DFE. Furthermore, we determined using model-fitting parameters the condition to attain stability. Finally, numerical simulations shows reduction in transmission with effective pest control measure.
References
Akanni, J. and Adediipo, A. (2018). Sensitivity analysis of the dynamical transmission and control of lassa fever virus. Asian Research Journal of Mathematics, pages 1–11. DOI: https://doi.org/10.9734/ARJOM/2018/37441
Bawa, M., Abdulrahman, S., Jimoh, O., and Adabara, N. (2013). Stability analysis of the disease–free equilibrium state for lassa fever disease. Journal of Science, Technology, Mathematics and Education (JOSTMED), 9(2):115–123.
Chaikham, N. and Sawangtong, W. (2017). Optimal control of zika virus infection by vector elimination, vector-to-human and human-to-human contact reduction. Advances in Difference Equations, 2017(1):177. DOI: https://doi.org/10.1186/s13662-017-1220-4
Coelho, S. P. and Milies, C. P. (1993). Derivations of upper triangular matrix rings. Linear algebra and its applications, 187:263–267. DOI: https://doi.org/10.1016/0024-3795(93)90141-A
Dahmane, A., Van Griensven, J., Van Herp, M., Van den Bergh, R., Nzomukunda, Y., Prior, J., Alders, P., Jambai, A., and Zachariah, R. (2014). Constraints in the diagnosis and treatment of lassa fever and the effect on mortality
in hospitalized children and women with obstetric conditions in a rural district hospital in sierra leone. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108(3):126–132.
Diekmann, O., Heesterbeek, J. A. P., and Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. Journal of mathematical biology, 28(4):365–382. DOI: https://doi.org/10.1007/BF00178324
Djomegni, P. T., Olupitan, G., and Goufo, E. D. (2021). A metapopulation model for zika virus disease transmission dynamics between linked communities. Physica Scripta, 96(12):124049. DOI: https://doi.org/10.1088/1402-4896/ac2bdb
Gupta, N. and Rink, R. (1973). Optimum control of epidemics. Mathematical Biosciences, 18(3-4):383–396. DOI: https://doi.org/10.1016/0025-5564(73)90012-6
Karrakchou, J., Rachik, M., and Gourari, S. (2006). Optimal control and infectiology: application to an hiv/aids model. Applied mathematics and computation, 177(2):807–818. DOI: https://doi.org/10.1016/j.amc.2005.11.092
Kutch, J. J. and Gurfil, P. (2002). Optimal control of hiv infection with a continuously-mutating viral population. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), volume 5, pages 4033–4038. IEEE. DOI: https://doi.org/10.1109/ACC.2002.1024560
Leirs, H., Verhagen, R., Verheyen, W., Mwanjabe, P., and Mbise, T. (1996). Forecasting rodent outbreaks in africa: an ecological basis for mastomys control in tanzania. Journal of Applied Ecology, pages 937–943. DOI: https://doi.org/10.2307/2404675
Li, S.-L., Bjørnstad, O. N., Ferrari, M. J., Mummah, R., Runge, M. C., Fonnesbeck, C. J., Tildesley, M. J., Probert, W. J., and Shea, K. (2017). Essential information: Uncertainty and optimal control of ebola outbreaks. Proceedings DOI: https://doi.org/10.1073/pnas.1617482114
of the National Academy of Sciences, 114(22):5659–5664.
Momoh, A. A. and F¨ugenschuh, A. (2018). Optimal control of intervention strategies and cost effectiveness analysis for a zika virus model. Operations Research for Health Care, 18:99–111. DOI: https://doi.org/10.1016/j.orhc.2017.08.004
Obabiyi, O. and Onifade, A. A. (2017). Mathematical model for lassa fever transmission dynamics with variable human and reservoir population. International Journal of Differential Equations and Applications, 16(1).
Okosun, K. O., Rachid, O., and Marcus, N. (2013). Optimal control strategies and cost effectiveness analysis of a malaria model. BioSystems, 111(2):83–101. DOI: https://doi.org/10.1016/j.biosystems.2012.09.008
Okuonghae, D. and Okuonghae, R. (2006). A mathematical model for lassa fever. Journal of the Nigerian Association of Mathematical Physics, 10(1). DOI: https://doi.org/10.4314/jonamp.v10i1.40157
Rachah, A. and Torres, D. F. (2015). Mathematical modelling, simulation, and optimal control of the 2014 ebola outbreak in west africa. Discrete Dynamics in Nature and Society, 2015. DOI: https://doi.org/10.1155/2015/842792
Rafikov, M., Bevilacqua, L., and Wyse, A. (2009). Optimal control strategy of malaria vector using genetically modified mosquitoes. Journal of Theoretical Biology, 258(3):418–425. DOI: https://doi.org/10.1016/j.jtbi.2008.08.006
Richmond, J. K. and Baglole, D. J. (2003). Lassa fever: epidemiology, clinical features, and social consequences. Bmj, 327(7426):1271–1275. DOI: https://doi.org/10.1136/bmj.327.7426.1271
Team, N. S. et al. (2018). Lassa fever in nigeria, 2017-2018. Bulletin of the Nigeria Centre for Disease Control.
Team, N. S. et al. (2019). Lassa fever in nigeria, 2019. Bulletin of the Nigeria Centre for Disease Control.
Van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2):29–48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences