INTEGRATED EMULSION PAINTS DERIVED FROM THREE POLYVINYL ACETATE (PVA) GROUNDNUT OIL

Authors

  • Y. M. Usman
  • J. A. Ndahi
  • U. U. Modibbo
  • E. F. Baka
  • D. Agabus
  • Z. A. Abdullahi
  • I. A. Liman

DOI:

https://doi.org/10.33003/fjs-2024-0803-2474

Keywords:

Emulsion paints, Substitute, Binder, Groundnut oil, Derived paint

Abstract

A modified paint was produced in this research to supplement and substituteproducts by tender small-scale private paint factories, in an era of increasing demand of paints by the nation’s alarmingly growing building technology. The research was aimed at the formulation of an emulsion paint with the aid of polyvinyl acetate mixed with Groundnut oil as a binder by reducing volatile organic compounds and to determine the major physical parameters such as drying time, period of elongation, density, refractive index, adhesion, pH, and chemical resistance. The result obtained showed increase of dry to hard from Pure PVA paint (90.23 minutes) followed by Gombe PVA paint (105.5 minutes) to Taraba PVA paint (110.00 minutes). The drying time of the paint samples was in this order Taraba PVA paint (80.0 min) > Gombe PVA paint (75.5 min) > Pure PVA paint (75.23 min). The dry to touch was in the decreasing order: Taraba PVA paint (56.2 min) > Gombe PVA paint (53.4 min) > Pure PVA oil (49.15 min). The density (g/cm3) showed that Gombe PVA paint (1.16) > Pure PVA paint (1.30) > Taraba PVA paint (1.10). The solubility test for both Taraba PVA Groundnut paint and Gombe PVA Groundnut derived paint are practically insoluble in water, while Pure PVA derive paint dissolved in water instantly. All the three formulated paints passed the resistance blistering and flexibility tests. FTIR showed the following functional groups Hydroxyl, Amines, Carboxylic acids, Alkylhallides, Ketones and Aldehydes at specific wavelength are present in paints that serves as...

References

Adaramola, M. S. (2012). Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renewable Energy, 47, 38–44.

Akpootu, D. O., & Abdullahi, Z. (2022). Development of Sunshine Based Models for Estimating Global Solar Radiation over Kano and Ikeja, Nigeria. FUDMA Journal of Sciences, 6(3), 290-300. https://doi.org/10.33003/fjs-2022-0603-1001

Akpootu, D. O., & Gana, N. N. (2014). Comparative study of global solar radiation between Nguru and Abuja. Paper presented at the 24th Annual Congress and Colloquium of the Nigerian Association of Mathematical Physics, University of Benin, Benin City, Nigeria. 25th – 28th February, 2014.

Akpootu, D. O., & Iliyasu, M. I. (2015a). A comparative study of some meteorological parameters for predicting global solar radiation in Kano, Nigeria based on three variable correlations. Advances in Physics Theories and Applications, 49, 1–9.

Akpootu, D. O., & Iliyasu, M. I. (2015b). The impact of some meteorological variables on the estimation of global solar radiation in Kano, North Western, Nigeria. Journal of Natural Sciences Research, 5(22), 1–13.

Akpootu, D. O., & Momoh, M. (2014). Empirical model for estimating global solar radiation in Makurdi, Benue State, North Central Nigeria. Paper presented at the 36th Annual Nigerian Institute of Physics, National Conference, University of Uyo, Nigeria. 26th -29th May, 2014.

Akpootu, D. O., & Mustapha, W. (2015). Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North-Eastern Nigeria. International Research Journal of Engineering and Technology, 2(8), 77-82.

Akpootu, D. O., & Sulu, H. T. (2015). A comparative study of various sunshine-based models for estimating global solar radiation in Zaria, North-Western, Nigeria. International Journal of Technology Enhancements and Emerging Engineering Research, 3(12), 1–5.

Akpootu, D. O., Alaiyemola, S. R., Abdulsalam, M. K., Bello, G., Umar, M., Aruna, S., Isah, A. K., Aminu, Z., Abdullahi, Z., & Badmus, T. O. (2023). Sunshine and Temperature Based Models for Estimating Global Solar Radiation in Maiduguri, Nigeria. Saudi Journal of Engineering and Technology, 8(5), 82-90.

https://doi.org/10.36348/sjet.2023.v08i05.001

Akpootu, D. O., Iliyasu, M. I., Mustapha, W & Aruna, S. (2015). Developing empirical models for predicting diffuse solar radiation over Yola, Adamawa State, North-Eastern, Nigeria.

Akpootu, D. O., Iliyasu, M. I., Olomiyesan, B. M., Fagbemi, S. A., Sharafa, S. B., Idris, M., Abdullahi, Z., Meseke, N. O. (2022). Multivariate Models for Estimating Global Solar Radiation in Jos, Nigeria. Matrix Science Mathematic, 6(1), 05-12. http://doi.org/10.26480/mkmk.01.2022.05.12

Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019a). Empirical models for predicting global solar radiation using meteorological parameters for Sokoto, Nigeria. International Journal of Physical Research, 7(2), 48–60. https://doi.org/10.14419/ijpr.v7i2.29160

Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019b). Sunshine and temperature-dependent models for estimating global solar radiation across the Guinea savannah climatic zone of Nigeria. American Journal of Physics and Applications, 7(5), 125-135. https://doi.org/10.11648/j.ajpa.20190705.15

Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019c). New temperature-dependent models for estimating global solar radiation across the midland climatic zone of Nigeria. International Journal of Physical Research, 7(2), 70–80. https://doi.org/10.14419/ijpr.v7i2.29214

Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019d). New temperature-dependent models for estimating global solar radiation across the coastal climatic zone of Nigeria. International Journal of Advances in Scientific Research and Engineering (IJASRE), 5(9), 126–141. https://doi.org/10.31695/IJASRE.2019.33523

Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Ångström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30, 931-936.

Bakirci K. (2015). Models for the Estimation of Diffuse Solar Radiation for Typical Cities in Turkey. Energy ; 82:827–38. http://dx.doi.org/10.1016/j.energy.2015.01.093

Berrizbeitia S. E., Eulalia J. G. and Tariq M., (2020). Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis. Energies 2020, 13, 701; doi:10.3390/en13030701

Bevington P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences, first Edition McGraw Hill Book Co., New York.

Chen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45, 1759-1769.

Collares-Pereira, M., & Rabl, A. (1979). The average distribution of solar radiation correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22(2), 155-164.

Duzen, H., & Aydin, H. (2012). Sunshine-based estimation of global solar radiation on a horizontal surface at Lake Van region (Turkey). Energy Conversion and Management, 58, 35–46. https://doi.org/10.1016/S0306-2619(01)00012-5

El-Sebaii, A., & Trabea, A. (2005). Estimation of global solar radiation on horizontal surfaces over Egypt. Egypt. J. Solids, 28(1), 163–175.

Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly average global radiation. Solar Energy, 28(4), 293-302.

Gana, N. N., & Akpootu, D. O. (2013a). Ångström type empirical correlation for estimating global solar radiation in North-Eastern Nigeria. The International Journal of Engineering and Science, 2(11), 58-78.

Gana, N. N., & Akpootu, D. O. (2013b). Estimation of global solar radiation using four sunshine-based models in Kebbi, North-Western, Nigeria. Pelagia Research Library, 4(5), 409-421.

Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120 - 357.

Halouani, N., Nguyen, C. T., & Vo-Ngoc, D. (1993). Calculation of monthly average solar radiation on horizontal surfaces using daily hours of bright sunshine. Solar Energy, 50, 247-248.

Iqbal, M. (1983). An Introduction to Solar Radiation. Academic Press.

Khatib, T., Mohamed, A., & Sopian, K. (2012). A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews, 16(5), 2864-2869.

Klucher, T. M. (1991). Estimating Solar Radiation. Springer Science & Business Media.

Kreider J, Kreith F. (1981) Solar Energy Handbook. New York: McGraw-Hill

Lam, J. C., & Li, D. H. W. (1996). Correlation between global solar radiation and its direct and diffuse components. Building and Environment, 31(6), 527-535.

Li, H., Bu, X., Long, Z., Zhao, L., & Ma, W. (2012). Calculating the Diffuse Solar Radiation in Regions Without Solar Radiation Measurements. Energy, 44(1), 611–615. https://doi.org/10.1016/j.energy.2012.05.033

Liu B. H, & R. C. Jordan. (1960). The interrelationship and characteristics distribution of direct, diffuse and total solar radiation from meteorological data. Solar Energy, 4, 1–9.

Merges, H. O., Ertekin, C., & Sonmete, M. H. (2006). Evaluation of global solar radiation models for Konya, Turkey. Energy Conversion and Management, 47, 3149-3173.

Muneer, T., Hawas, M. M., & Sahili, K. (1984). Correlation between hourly diffuse and global radiation for New Delhi. Energy Conversion and Management, 24(4), 265-267.

Myers, R. D. (2013). Solar Radiation: Practical Modeling for Renewable Energy. CRC Press.

Ogbulezie, J., Ushie, O., & Nwokolo, S. (2017). A Review of Regression Models Employed for Predicting Diffuse Solar Radiation in North-Western Africa. Trends in Renewable Energy, 3(2), 160-206. DOI: 10.17737/tre.2017.3.2.0042

Olomiyesan, B. M., Akpootu, D. O., Oyedum, D. O., Olubusade, J. E., & Adebunmi, S. O. (2021). Evaluation of global solar radiation models performance using global performance indicator (GPI): A case study of Ado Ekiti, South West, Nigeria. Paper presented at the 43rd Annual Nigerian Institute of Physics, National Conference, Nnamdi Azikiwe University, Awka, Anambra State, May 26-29.

Page J. K. (1961). The estimation of monthly mean values of daily total short-wave radiation on vertical and inclined surfaces from sunshine records for latitudes 40°N – 40°S. Proceedings of the UN Conference on New Sources of Energy, 4, 378-390.

Saidur, R., Masjuki, H. H., & Hassanuzzaman, M. (2009). Performance of an improved solar car ventilator. International Journal of Mechanical and Materials Engineering, 4(1), 24–34.

Salhi Hicham, Lazhar Belkhiri and Ammar Tiri, (2020). Evaluation of Diffuse Fraction and Diffusion Coefficient Using Statistical Analysis. Applied Water Science 10:133 https://doi.org/10.1007/s13201-020-01216-0

Zekai, S. (2008). Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change, and Renewable Energy (1st ed.). Springer, London.

Published

2024-06-30

How to Cite

Usman, Y. M., Ndahi, J. A., Modibbo, U. U., Baka, E. F., Agabus, D., Abdullahi, Z. A., & Liman, I. A. (2024). INTEGRATED EMULSION PAINTS DERIVED FROM THREE POLYVINYL ACETATE (PVA) GROUNDNUT OIL. FUDMA JOURNAL OF SCIENCES, 8(3), 48 - 55. https://doi.org/10.33003/fjs-2024-0803-2474