MECHANICAL PROPERTIES AND MICROSTRUCTURE OF EPOXY, HORN, ALKALINE TREATED/UNTREATED COCONUT SHELL PARTICULATES HYBRID COMPOSITE

  • Kabiru Ajao University of Ilorin
  • Asipita Federal University of Technology, Minna, Nigeria
  • Saka Federal University of Technology, Minna, Nigeria
Keywords: Composite, polymer, synthetic, natural, alkaline

Abstract

ABSTRACT: The mechanical properties (Tensile and Flexural Strengths) of sheep horn, treated and untreated coconut shell particles reinforced epoxy composite were investigated in this work. The composite was formulated using design expert software, with weight fraction of epoxy resin varied from 90 to 100%, while that of each of the sheep horn and coconut shell particles varied from 0 to 5 % weight, resulting in the composite of single and hybrid reinforcements. The results obtained showed that tensile and flexural strengths of the hybrid composite were superior to those of the individual fiber reinforced composite. Maximum tensile strength and flexural strength of 36.52 MPa and 67.93 MPa respectively, representing 74.3%, and 35.6% improvement, compared to the tensile strength and flexural strength of the control sample were obtained with the hybrid composite sample containing a blend of 5% wt. sheep horn and 3% wt. treated coconut shell particles. The microstructure analysis revealed the enhanced interfacial adhesion between the matrix and the reinforcement of the composite samples containing alkaline treated coconut shell particles. Hence, alkaline treatment is a good natural fiber’s surface modification technique to improve adhesion between the fibers and the matrix.

Author Biographies

Asipita, Federal University of Technology, Minna, Nigeria

Professor of Materials and Metallurgical Engineering, Federal University of Technology, Minna, Nigeria.

Saka, Federal University of Technology, Minna, Nigeria

Professor of Chemical Engineering, Federal University of Technology, Minna, Nigeria.

References

Abdulrahim, M. Y., Yawas, D. S., Mohammed, R. A., & Afolayan, M. O. (2021). Hybridization of polyester/banana stem fiber and cow horn particulate composite for possible production of military helmet. International Journal of Sustainable Engineering, 14(5), 1170-1180. DOI: https://doi.org/10.1080/19397038.2021.1892233

Adah, P. U., Nuhu, A. A., Salawu, A. A., Hassan, A. B., & Ubi, P. A. (2024). Characterization of periwinkle shell ash reinforced polymer composite for automotive application. FUDMA Journal of Sciences (FJS), 8(1), 83-92. https://doi.org/10.33003/fjs-2024-0801-2158 DOI: https://doi.org/10.33003/fjs-2024-0801-2158

Agunsoye, J. O., Talabi, S. I., & Sanni, O. S. (2012). Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. Journal of Minerals and Materials Characterization and Engineering, 11, 774-779. DOI: https://doi.org/10.4236/jmmce.2012.118065

Akindapo, J. O., Harrison, A., & Sanusi, O. M. (2014). Evaluation of mechanical properties of coconut shell fibres as reinforcement material in epoxy matrix. International Journal of Engineering Research & Technology, 3(2), 2337-2348.

Andezai, A. M., Masu, L. M., & Maringa, M. (2020). Investigating the mechanical properties of reinforced coconut shell powder/epoxy resin composites. International Journal of Engineering Research and Technology, 13(10), 2742-2751. DOI: https://doi.org/10.37624/IJERT/13.10.2020.2742-2751

Arthanarieswaran, V. P., Kumaravel, A., & Saravanakumar, S. S. (2015). Physico-chemical properties of alkali-treated acacia leucophloea fibers. International Journal of Polymer and Analytical Chemistry, 20, 704-713. https://doi.org/10.1080/1023666X.2015.1081133 DOI: https://doi.org/10.1080/1023666X.2015.1081133

Bello, S. A., Agunsoye, J. O., & Hassan, S. B. (2015). Synthesis of coconut shell nanoparticles via a top-down approach: Assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Materials Letters, 159, 514-519. DOI: https://doi.org/10.1016/j.matlet.2015.07.063

Bodunrin, M. O., Alaneme, K. K. & Chown, L. H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Material Research Technology. https://dx.doi.org/10.1016/j.jmrt.2015.05.003 DOI: https://doi.org/10.1016/j.jmrt.2015.05.003

Fiore, V., Bella, G. D., & Valenza, A. (2015). The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites: Part B, 68, 14 – 21. https://dx.doi.org/10.1016/j.compositesb.2014.08.025 DOI: https://doi.org/10.1016/j.compositesb.2014.08.025

Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym., 106, 77-83. DOI: https://doi.org/10.1016/j.carbpol.2014.02.016

Gupta, M., Srivastava, R., & Bisaria, H. (2015). Potential of jute fibre reinforced polymer composites: a review. International Journal of Fiber and Textile Research, 5(3), 30-38.

Herlina-Sari, N., Wardana, I. N. G., Irawan, Y. S., & Siswanto, E. (2018). Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. Journal of Natural Fibers, 15(4), 545-558. DOI: https://doi.org/10.1080/15440478.2017.1349707

Keya, K. N., Kona, N. A., Koly, F. A., Maraz, K. M., Islam, M. N., & Khan, R. A. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Material Science and Engineering Reports, 1(2), 69-87. DOI: https://doi.org/10.25082/MER.2019.02.006

Kumar, A. P., Mohamed, M. N., Philips, K. K., & Ashwin, J. (2016). Development of novel natural composites with fly ash reinforcements and investigation of their tensile properties. Applied Mechanics and Materials, 852, 55-60. DOI: https://doi.org/10.4028/www.scientific.net/AMM.852.55

Kumar, M., Bala, A., Prithviraj, M., Raghavendra, & Prasad, V. (2018). Study on the effect of varying volume fraction on mechanical properties of coconut shell powder reinforced epoxy matrix composite. IOP Conference Series: Materials Science and Engineering, https://doi:10.1088/1757-899X/376/1/012097 DOI: https://doi.org/10.1088/1757-899X/376/1/012097

Mansour, R., Hocine, O., Abdellatif, I., & Noureddine, B. (2011). Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Engineering, 10, 2092-2097. DOI: https://doi.org/10.1016/j.proeng.2011.04.346

Moh’d-Nazarudin, Z., Moh’d-Ariff, J., Masitah, A. K., Nur-Shafiqah, O., Maizatulnisa, O., Syaidatul-Hazira, M. N., & Moh’d-Nurul Azman, M. T. (2013). The effect of alkaline treatment on water absorption and tensile properties of non-woven kenaf polyester composite. Advanced Materials Research, 812, 258-262. https://doi:10.4028/www.scientific.net/AMR.812.258 DOI: https://doi.org/10.4028/www.scientific.net/AMR.812.258

Mohankumararadhya, H. M., Wadappi, P., Chandrashekar, A., & Naik, Y. (2020). Studies on bio waste product particle reinforced polymer composites. AIP Conference Proceedings, https://doi.org/10.1063/5.0022746 DOI: https://doi.org/10.1063/5.0022746

Nithyanandhan, T., Rohith, K., Sidharath, C.G., Sachin, C. & Jagadesh, S. (2017). Investigation of mechanical properties of aluminium based hybrid composites. International Journal of Innovative Research in Science, Engineering and Technology, 6(7), 118-126.

Obiukwu, O. O., Uchechukwu, M. N., & Nwaogwugwu, M. C. (2016). Study on the properties of coconut shell powder reinforced high-density polyethylene composite. FUTO Journal Series, 2(2), 43-55.

Onuoha, C., Onyemaobi, O., & Anyakwo, C. (2017). Effect of filler loading and particle size on the mechanical properties of periwinkle shell filled recycled polypropylene composites. American Journal of Engineering Research, 6, 72-79.

Onwumere, R. A., Nnakwo, K. C., & Okorie, B. A. (2019). Effect of alkaline treatment on mechanical and thermal properties of coconut shell particulates reinforced epoxy composite. American Journal of Chemistry and Materials Science, 6(1), 10-14.

Osokoya, O. (2017). An evaluation of polymer composites for car bumper beam. International Journal of Automotive Composites, 3(1), 44-60. DOI: https://doi.org/10.1504/IJAUTOC.2017.086521

Palta, E., Fang, H., & Weggel, D. C. (2018). Finite element analysis of the advanced combat helmet under various ballistic impacts. International Journal of Impact Engineering, 112, 125-143. DOI: https://doi.org/10.1016/j.ijimpeng.2017.10.010

Rajkumar, R., Manikandan, A., & Saravanakumar, S. S. (2016). Physicochemical properties of alkali treated new cellulosic fiber from cotton shell. International Journal of Polymer and Analytical Chemistry, 21(4), 359-364. DOI: https://doi.org/10.1080/1023666X.2016.1160509

Reddy, B. R., & Dhoria, S. H. (2018). Effect of alkaline treatment on mechanical properties of kenaf fiber reinforced polyester composites. Advances in Mechanical Design, Materials and Manufacture, AIP Conference Proceedings, https://doi.org/10.1063/1.5029673 DOI: https://doi.org/10.1063/1.5029673

Samaei, S. E., Mahabadi, H. A., Mousavi, S. M., Khavanin, A., Faridan, M., & Taban, E. (2020). The influence of alkaline treatment on acoustical, morphological, tensile and thermal properties of Kenaf natural fibers. Journal of Industrial Textiles, https://doi:101177/1528083720944240 DOI: https://doi.org/10.1177/1528083720944240

Sarki, J., Hassan, S. B., Aigbodion, V. S., & Ogbenevweta, J. E. (2011). Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509(5), 2381-2385. DOI: https://doi.org/10.1016/j.jallcom.2010.11.025

Senthilkumar, K., Chandrasekar, M., Othman, Y. A., Hassan, F., Jawaid, M., & Azeem, M. A. (2022). Flexural, impact and dynamic mechanical analysis of hybrid composites: Olive tree leaves powder/ pineapple leaf fibre/epoxy matrix. Journal of Materials Research and Technology, 21, 4241-4252. DOI: https://doi.org/10.1016/j.jmrt.2022.11.036

Setty, V. K. S. N., Govardhan, G., Rangappa, S. M., & Siengchin, S. (2020). Raw and chemically treated bio-waste filled (Limonia acidissima shell powder) vinyl ester composites: Physical, mechanical, moisture absorption properties, and microstructure analysis. Journal of Vinyl Additive Technology, 1-11. https://doi:10.1002/vnl.21787 DOI: https://doi.org/10.1002/vnl.21787

Somashekhar, T. M., Premkumar, N., Vighnesha, N., Mallikappa, K., & Rahul, S. (2018). Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced epoxy composites. IOP Conference Series: Materials Science and Engineering, https://doi:10.1088/1757-899X/376/1/012105 DOI: https://doi.org/10.1088/1757-899X/376/1/012105

Wang, X., Xie, J., Zhang, H., Zhang, W., An, S., Chen, S., & Luo, C. (2019). Determining the lignin distribution in plant fiber cell walls based on chemical and biological methods. Cellulose, 26, 4241-4252. DOI: https://doi.org/10.1007/s10570-019-02384-2

Published
2024-06-30
How to Cite
Ajao, K., Abdulrahman, S., & Abdulkareem, A. (2024). MECHANICAL PROPERTIES AND MICROSTRUCTURE OF EPOXY, HORN, ALKALINE TREATED/UNTREATED COCONUT SHELL PARTICULATES HYBRID COMPOSITE. FUDMA JOURNAL OF SCIENCES, 8(3), 214 - 221. https://doi.org/10.33003/fjs-2024-0803-2464