MOLECULAR BEAM EPITAXY GROWTH OF HIGH-QUALITY InN NANORODS ON Si (111) SUBSTRATE
Abstract
The growth of high-quality InN nanorods (NRs) on Si (111) by plasma-assisted molecular beam epitaxy (PAMBE) is reported. X-ray diffraction and Raman spectroscopy investigations indicates that the NRs are wurtzite, c-axis oriented and single crystalline. Low temperature photoluminescence emissions with peak energy of ~ 0.75eV was observed indicating the high quality of the nanostructures. This study unravels a novel strategy for the successful growth of high-quality InN NRs on Silicon which is highly promising for applications in next generation nanodevices.
References
REFERENCES
Agulló-Rueda, F., Mendez, E. E., Bojarczuk, B., & Guha, S. (2000). Raman spectroscopy of wurtzite InN films grown on Si. Solid State Communications, 115(1), 19–21. https://doi.org/10.1016/S0038-1098(00)00132-0 DOI: https://doi.org/10.1016/S0038-1098(00)00132-0
Anyebe, E. A. (2020). Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon. Nanomaterials, 10(10), 2064. https://doi.org/10.3390/nano10102064 DOI: https://doi.org/10.3390/nano10102064
Ashraful Ghani, B., Akihiro, H., & Akio, Y. (2003). Indium nitride ( InN): A review on growth, characterization, and properties. Journal of Applied Physics, 94, 2779. DOI: https://doi.org/10.1063/1.1595135
Biju, K. P., & Jain, M. K. (2009). Annealing studies on InN thin films grown by modified activated reactive evaporation. Journal of Crystal Growth, 311(8), 2542–2548. https://doi.org/10.1016/j.jcrysgro.2009.01.105 DOI: https://doi.org/10.1016/j.jcrysgro.2009.01.105
Chang, Y., Li, F., Fatehi, A., & Mi, Zetian. (2009). Molecular beam epitaxial growth and characterization of non-tapered inn nanowires on si(111). Nanotechnology, 20, 345203. https://doi.org/10.1088/0957-4484/20/34/345203 DOI: https://doi.org/10.1088/0957-4484/20/34/345203
Chang, Y.-L., Li, F., & Mi, Z. (2010). Optimization of the structural and optical quality of InN nanowires on Si(111) by molecular beam epitaxy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(3), C3B7-C3B11. https://doi.org/10.1116/1.3292560 DOI: https://doi.org/10.1116/1.3292560
Chen, W.-C., Yu, T.-Y., Lai, F.-I., Chen, H.-P., Lin, Y.-W., & Kuo, S.-Y. (2019a). Growth of Catalyst-Free Hexagonal Pyramid-Like InN Nanocolumns on Nitrided Si(111) Substrates via Radio-Frequency Metal–Organic Molecular Beam Epitaxy. Crystals, 9(6), 291. https://doi.org/10.3390/cryst9060291
Chen, W.-C., Yu, T.-Y., Lai, F.-I., Chen, H.-P., Lin, Y.-W., & Kuo, S.-Y. (2019b). Growth of Catalyst-Free Hexagonal Pyramid-Like InN Nanocolumns on Nitrided Si(111) Substrates via Radio-Frequency Metal–Organic Molecular Beam Epitaxy. Crystals, 9(6), 291. https://doi.org/10.3390/cryst9060291 DOI: https://doi.org/10.3390/cryst9060291
Cheng, G., Stern, E., Turner-Evans, D., & Reed, M. A. (2005). Electronic properties of InN nanowires. Applied Physics Letters, 87(25). https://doi.org/10.1063/1.2141927 DOI: https://doi.org/10.1063/1.2141927
Davydov, V. Yu., Emtsev, V. V., Goncharuk, I. N., Smirnov, A. N., Petrikov, V. D., Mamutin, V. V., Vekshin, V. A., Ivanov, S. V., Smirnov, M. B., & Inushima, T. (1999). Experimental and theoretical studies of phonons in hexagonal InN. Applied Physics Letters, 75(21), 3297–3299. https://doi.org/10.1063/1.125330 DOI: https://doi.org/10.1063/1.125330
Davydov, V. Yu., Klochikhin, A. A., Smirnov, M. B., Emtsev, V. V., Petrikov, V. D., Abroyan, I. A., Titov, A. I., Goncharuk, I. N., Smirnov, A. N., Mamutin, V. V., Ivanov, S. V., & Inushima, T. (1999). Phonons in Hexagonal InN. Experiment and Theory. Physica Status Solidi (b), 216(1), 779–783. https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<779::AID-PSSB779>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<779::AID-PSSB779>3.0.CO;2-H
Feng, S., Tan, J., Li, B., Song, H., Wu, Z., & Chen, X. (2015). Nitridation effects of Si(1 1 1) substrate surface on InN nanorods grown by plasma-assisted molecular beam epitaxy. Journal of Alloys and Compounds, 621, 232–237. https://doi.org/10.1016/j.jallcom.2014.09.211 DOI: https://doi.org/10.1016/j.jallcom.2014.09.211
Grandal, J., Sánchez-García, M. A., Calleja, E., Luna, E., & Trampert, A. (2007). Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy. Applied Physics Letters, 91(2). https://doi.org/10.1063/1.2756293 DOI: https://doi.org/10.1063/1.2756293
Hochbaum, A. I., & Yang., P. (2010). Semiconductor nanowires for energy conversion. Chemical Reviews, 110, 527–546. https://doi.org/10.1109/INEC.2010.5424441 DOI: https://doi.org/10.1021/cr900075v
Hsiao, C.-L., Tu, L.-W., Chen, M., Jiang, Z.-W., Fan, N.-W., Tu, Y.-J., & Wang, K.-R. (2005). Polycrystalline to Single-Crystalline InN Grown on Si(111) Substrates by Plasma-Assisted Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 44(8L), L1076. https://doi.org/10.1143/JJAP.44.L1076 DOI: https://doi.org/10.1143/JJAP.44.L1076
Imran, A., Sulaman, M., Yang, S., Bukhtiar, A., Qasim, M., Elshahat, S., Khan, M. S. A., Dastgeer, G., Zou, B., & Yousaf, M. (2022). Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surfaces and Interfaces, 29, 101772. https://doi.org/10.1016/j.surfin.2022.101772 DOI: https://doi.org/10.1016/j.surfin.2022.101772
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences