ISOLATION AND MOLECULAR IDENTIFICATION OF BACTERIA ASSOCIATED WITH SOIL SURROUNDING THE ROOT OF CITRUS (Citrus sinensis L.) TREE

  • Ganiyu Shittu Olahan Department of plant biology, university of Ilorin, Ilorin, Nigeria
  • Ibrahim Ajadi Department of plant biology, university of Ilorin, Nigeria.
Keywords: Bacterial species, Microbiological activities, Physico-chemical analysis, Phosphorus solubilization, Serial dilution

Abstract

Microbiological processes occur in the soil around the roots of land plants. This dynamic area, where plants and microorganisms interact, is crucial for the health and productivity of these plants. This study was aimed at isolating and molecularly identifying bacteria associated with the soil surrounding the root of an orange tree growing in the University of Ilorin, Nigeria to be able to know their roles, whether beneficial or harmful. Securing the soil is a way of having a food-secured world. Soil samples were collected at four different points from an orange tree trunk into separately labeled Ziploc bags using a separate sterile hand trowel for each collection. The labeled ziploc bags were brought to the University of Ilorin's Biology Laboratory for physicochemical analysis of the soil sample and isolation of bacteria using serial dilution method. Results of the physicochemical assessment of the bulked sample indicated that it is a sandy-loam soil with pH value of 6.7 (slightly neutral). Four bacterial species, i.e. Bacillus cereus, Lysinibacillusmacroides, Leucobacterkomogatae, and Alcaligenesfaecalis were isolated and identified molecularly. According to existing literature, the four bacterial species identified in this study are known for their abilities to enhance plant development and solubilize phosphorus, which are crucial for improving supply of nutrient.

References

Burkett-Cadena, M., Sastoque, L., Cadena, J., & Dunlap, C.A. (2019). Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant. Antonie Van Leeuwenhoek, 112(8), 1161-1167. doi: 10.1007/s10482-019-01248-w. DOI: https://doi.org/10.1007/s10482-019-01248-w

Dai, D., Yang, Y., Yu, J., Dang, T., Qin, W., Teng, L., Ye, J., & Jiang, H. (2021). Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis., 12(12), 1104. https://doi.org/10.1038/s41419-021-04396-y . DOI: https://doi.org/10.1038/s41419-021-04396-y

Dukare, A., Mhatre, P., Maheshwari, H.S., Bagul, S., Manjunatha, B.S., Khade, Y., & Kamble, U. (2022). Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3Biotech., 12(3), 57. https://doi.org/10.1007/s13205-022-03115-4 . DOI: https://doi.org/10.1007/s13205-022-03115-4

Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y., & Bargaz, A. (2021). Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res., 38, 13-28. doi: 10.1016/j.jare.2021.08.014. DOI: https://doi.org/10.1016/j.jare.2021.08.014

Fang, X., Zhang, M., Tang, Q., Wang, Y., & Zhang X. (2014). Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytiscinerea in vitro and in planta. Sci. Rep., 4, 4300. https://doi.org/10.1038/srep04300 DOI: https://doi.org/10.1038/srep04300

Fawole, M.O., & Oso, B.A. (2007). Laboratory Manual of Microbiology. Spectrum Books Limited, Ibadan, Nigeria. pp 127.

Fernandes, H.M.Z., Conceição, E.C., da Silva, S.P., Machado, E., Sisco, M.C., Sharma, A., Lima, K.V.B., da Conceição, M.L., da Silva Carvalho, A.C., Miranda, K.R., Silva Duarte, R., Alviano, D.S., &da Silva Dias, R.C. (2021). Whole-Genome Sequencing of Alcaligenes faecalis HZ01, with Potential to Inhibit Nontuberculous Mycobacterial Growth. Microbiol. Resour. Announc.,10(39), e0052121.doi: 10.1128/MRA.00521-21 DOI: https://doi.org/10.1128/MRA.00521-21

Fierer, N., Wood, S.A., & de Mesquita, C.B. (2021). How microbes can, and cannot be used to assess soil health. Soil Biology and Biochemistry, 153, 108111. https://doi.org/10.1016/j.soilbio.2020.108111 DOI: https://doi.org/10.1016/j.soilbio.2020.108111

Gao, Y., Yuan, L., Du, J., Wang, H., Yang, X., Duan, L., Zheng, L., Bahar, M.M., Zhao, Q., Zhang, W., Liu, Y., Fu, Z., Wang, W., & Naidu, R. (2022). Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China. Chemosphere, 289, 133207. https://doi.org/10.1016/j.chemosphere.2021.133207. DOI: https://doi.org/10.1016/j.chemosphere.2021.133207

Haouas, A., El Modafar, C., Douira, D., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A. & Soumia, Amir. (2021). Alcaligenes aquatilis GTE53: Phosphate solubilising and bioremediation bacterium isolated from new biotope “phosphate sludge enriched-compostâ€. Saudi Journal of Biological Sciences, 28(1), 371-379. https://doi.org/10.1016/j.sjbs.2020.10.015. DOI: https://doi.org/10.1016/j.sjbs.2020.10.015

Huang, L., Wang, X., Chi, Y., Li, W.C., & Ye, Z. (2021). Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf., 222, 112474. https://doi.org/10.1016/j.ecoenv.2021.112474 . DOI: https://doi.org/10.1016/j.ecoenv.2021.112474

Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., & Lear, G. (2020). Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 8(1), 79. https://doi.org/10.1186/s40168-020-00858-1. DOI: https://doi.org/10.1186/s40168-020-00858-1

Jin, J., Yamamoto, R., Takeuchi, T., Cui, G., Miyauchi, E., Hojo, N., Ikuta, K., Ohno, H., & Shiroguchi, K. (2022). High-throughput identification and quantification of single bacterial cells in the microbiota. Nat. Commun., 13(1), 863. https://doi.org/10.1038/s41467-022-28426-1 DOI: https://doi.org/10.1038/s41467-022-28426-1

Joshi, S., Gangola, S., Bhandari, G., Bhandari, N.S., Nainwal, D., Rani, A., Malik, S., & Slama, P. (2023). Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front. Microbiol., 14, 1229828. doi: 10.3389/fmicb.2023.1229828. DOI: https://doi.org/10.3389/fmicb.2023.1229828

Jyolsna, K.S., Bharathi, N., Ali, LR., Paari, K.A. (2021). Impact of Lysinibacillus macroides, a potential plant growth promoting rhizobacteria on growth, yield and nutritional value of tomato Plant (Solanum lycopersicum L. F1 hybrid Sachriya). Plant Science Today, 8(2), 365–372. https://doi.org/10.14719/pst.2021.8.2.1082 DOI: https://doi.org/10.14719/pst.2021.8.2.1082

Khan, U.M., Sameen, A., Aadil, R.M., Shahid, M., Sezen, S., Zarrabi, A., Ozdemir, B., Sevindik, M., Kaplan, D.N., Selamoglu, Z., Ydyrys, A., Anitha, T., Kumar, M., Sharifi-Rad, J., & Butnariu, M. (2021). Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. Evid. Based Complement Alternat. Med., 2021, 2488804. https://doi.org/10.1155/2021/2488804 . DOI: https://doi.org/10.1155/2021/2488804

Lazaneo, V. (2014). Citrus for the home garden. Accessed online on 20th May at https://www.mastergardenersd.org/wp-content/uploads/2016/12/citrus-for-the-home-garden.pdf

Okanlawon, B.M., Ogunbanwo, S.T., & Okunlola, A.O. (2010). Growth of Bacillus cereus isolated from some traditional condiments under different regimens. Afr. J. Biotechnol., 8, 2129–2135.

Olahan, G.S., Ajadi, I., & Issa, B.T. (2023). Identification of Fungi Associated with Rotten Sweet Orange Fruits (Citrus sinensis L.) in University of Ilorin Botanical Garden. Savanna Journal of Basic and Applied Sciences, 5(2), 69-74.

Olahan, G.S., Balogun, G.S., Oladokun, E.D., Musa, K.D., & Ajayi, O.A. (2017). Isolation and identification of fungi associated with the rhizospheres of some economic tree. Annals, Food Science and Technology (afst), 18(4), 696-699.

Oteino, N., Lally, R.D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K.J., & Dowling, D.N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol., 6, 745. doi: 10.3389/fmicb.2015.00745. DOI: https://doi.org/10.3389/fmicb.2015.00745

Oyeyiola, G. P., & Agbaje, A. B. (2013). Physicochemical Analysis of a Soil near Microbiology Laboratory at The University of Ilorin, Main Campus. Journal of Natural Sciences Research, 3, 78-81.

Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., Xiaolei, D., Xuejiao, H., & Bilal, M. (2021). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMCMicrobiol., 23(1), 221. doi: 10.1186/s12866-023-02953-3. DOI: https://doi.org/10.1186/s12866-023-02953-3

Rao, M.J., Zuo, H., & Xu, Q. (2020). Genomic insights into citrus domestication and its important agronomic traits. Plant Commun., 2(1), 100138. https://doi.org/ 10.1016/j.xplc.2020.100138 DOI: https://doi.org/10.1016/j.xplc.2020.100138

Saimmai, A., Sobhon, V., & Maneerat, S. (2012). Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Ann. Microbiol., 62, 391–402. https://doi.org/10.1007/s13213-011-0275-9 DOI: https://doi.org/10.1007/s13213-011-0275-9

Timofeeva, A.M., Galyamova, M.R., & Sedykh, S.E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants (Basel),. 11(22), 3065. doi: 10.3390/plants11223065. DOI: https://doi.org/10.3390/plants11223065

Trivedi, P., Spann, T., & Wang, N. (2011). Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida. MicrobialEcology, 62(2), 324–336. DOI: https://doi.org/10.1007/s00248-011-9822-y

Wan, W., Liu, S., Li, X., Xing, Y., Chen, W., & Huang, Q. (2021). Bridging Rare and Abundant Bacteria with Ecosystem Multi-functionality in Salinized Agricultural Soils: from Community Diversity to Environmental Adaptation. mSystems, 6(2), e01221-20. https://doi.org/10.1128/mSystems.01221-20 . DOI: https://doi.org/10.1128/mSystems.01221-20

Yakubu, P., & Ajayi, A. O. (2024). Molecular Characterization of Heavy Metal Resistant Bacterial Isolates Obtained from Mining Soil in Ikpeshi, South-West, Nigeria. Journal of Microbiology Research, 14(1), 1-10.

Published
2024-06-30
How to Cite
OlahanG. S., & AjadiI. (2024). ISOLATION AND MOLECULAR IDENTIFICATION OF BACTERIA ASSOCIATED WITH SOIL SURROUNDING THE ROOT OF CITRUS (Citrus sinensis L.) TREE. FUDMA JOURNAL OF SCIENCES, 8(3), 338 - 343. https://doi.org/10.33003/fjs-2024-0803-2402