ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF SOME HYDRAZONES SYNTHESIZED FROM NICOTINIC ACID HYDRAZIDE

  • Ahmad Muhammad Sule Lamido University Kafin Hausa Jigawa State
  • Hamisu Ibrahim
  • Rachael G. Ayo
  • Dele P. Fapojuwo
  • Zenixole R. Tshentu
Keywords: Hydrazones, Drug, Nicotinic acid hydrazide, Ethanol

Abstract

N’-(2-pyridinylmethylene)nicotinohydrazide A, N’-(4-pyridinylmethylene)nicotinohydrazide B, N’-(2- ethoxybenzylidene)nicotinohydrazide C, N’-(4- ethoxybenzyldene)nicotinohydrazide D and N’-(2-hydroxyl-5-methoxybenzylidene)nicotinohydrazide E, was prepared by refluxing the ethanolic solution of nictonic acid hydrazide and ethanolic solutions of 2-pyridinrcarboxaldehyde, 4-pyridinecarboxaldehyde, 2-ethoxybenzaldehyde, 4-ethoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde in 1:1 mole ratio for 4 hours in a separate reactions. The compounds obtained had a melting point between (120-236 oC) and a percentage yield between (52.38-77.70 %). They were crystalline solids. The compounds' solubility were assessed in water, ethanol, methanol, acetone, hexane, diethyl ether, dimethyl sulfoxide (DMSO), ethyl acetate, and chloroform. The substances were discovered to be fully soluble in DMSO and methanol. FT-IR, 1H-NMR and 13C-NMR were used for the characterization of the compounds. The antibacterial and antifungal properties were tested against Methicillin-resistant Staphylococcus Aureus, Vancomycin-resistant Enterococci, S. aureus, S. typhi, P. aeruginosa, A. nigre, A. flavus, and C. albicans. The zones of inhibitions ranged from 22 to 28 mm and the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were found to be 0.063 mg/mL, 0.125 mg/mL and 0.125 mg/mL respectively. These indicated that the compounds might be good potential drug candidates.

References

Abubakar, T. A., Eke, U. B. and Degni, S.K. (2019). Isoniazid Stabilized Tungsten Tricarbonyl Complex: A New CO-releasing Molecule with Antibacterial Activity. Science Forum (Journal of Pure and Applied Sciences), 139 – 144. http://dx.doi.org/10.5455/sf.43013 DOI: https://doi.org/10.5455/sf.43013

Abubakar, T. A. and Eke, U. B. (2021). Preparation, Characterization and Antibacterial Studies of hydrazones Sustituted Molybdenum carbonyls, Journal of Chemical Society of Nigeria, 46(5), 0919 – 0930 https://doi.org/10.46602/jcsn.v46i5.671 DOI: https://doi.org/10.46602/jcsn.v46i5.671

Chafiq, M., Chaouiki, A., Al-Hadeethi, M. R., Ali, I. H., Mohamed, S. K., Toumiat, K. and Salghi, R. (2020). Naproxen-based hydrazones as effective corrosion inhibitors for mild steel in 1.0M HCl. Coatings, 10(7), 1-17. DOI: 10.3390/coatings10070700 DOI: https://doi.org/10.3390/coatings10070700

Cinar, E. and Topal, G. (2022). Synthesis of some hydrazones derived from 2-(aryloyloxy)benzaldehydes and 2,4-dinitrophenylhydrazine and evaluation of their anticholinesterase and antioxidant activities. Organic Communications, 15(4), 1-9. http://doi.org/10.25135/acg.oc.137.2209.2570 DOI: https://doi.org/10.25135/acg.oc.137.2209.2570

Galvao, A. D., de-Moraes, F. T., de Sousa, C. C., de Sousa, K. M. D., de Marchi, P. G. F., Franca, A. C. H., Franca, E. L. and dos Santos, W. B. (2019). Synthesis and characterization of a new compound of cobalt II with isonicotinamide and evaluation of their bactericidal potential. Journal of Inorganic Chemistry, 9(2), 11-22. https://doi.org/10.4236/ojic.2019.92002 DOI: https://doi.org/10.4236/ojic.2019.92002

He, G. X., and Xue, L. W. (2021). Synthesis, structures and antibacterial activities of hydrazones compounds derived from 4-dimethylaminobenzohydrazide. Acta chimica slovenica, 68(3), 567-574. DOI: 10.17344/acsi.2020.6333 DOI: https://doi.org/10.17344/acsi.2020.6333

Hussain, I. and Ali, A. (2017). Exploring the pharmacological activities of hydrazones derivatives: a review. Journal of Phytochemistry and Biochemistry, 1(1), 1-11

Idris, M. I., Sadi, A. H. and Abubakar, A. A. (2020). Synthesis, characterization and biological studies of Ni(II) complexes with Schiff bases CO-Ligand derived from 5,6-diamino-1,10-Phenanthroline and benzene-1,4-dicarbaldehyde. Fudma Journal of Sciences, 4(3), 132-141. https://doi.org/10.33003/fjs-2020-0403-354. DOI: https://doi.org/10.33003/fjs-2020-0403-354

Kenny, P. W. (2022). Hydrogen-bond donors in drug design. Journal of Medicinal Chemistry, 65(21), 14261-14275. DOI: https://doi.org/10.1021/acs.jmedchem.2c01147

Kruger, W., Vielreicher, S., Kapitan, M., Jacobsen, I. D. and Niemiec, M. J. (2019). Fungal-bacterial interactions in health and diseases. Pathogens, 8(2), 1-41. doi:10.3390/pathogens8020070 DOI: https://doi.org/10.3390/pathogens8020070

Mainsah, E. N., Ntum, S. J. E., Conde, M.A., Chi, G.T., Raftery, J. and Ndifon, P. T. (2019) Synthesis, Characterization and Crystal Structure of Cobalt (II) Complex of a Schiff Base Derived from Isoniazid and Pyridine-4-Carboxaldehyde. Crystal Structure Theory and Applications, 8, 45-56. https://doi.org/10.4236/csta.2019.84004 DOI: https://doi.org/10.4236/csta.2019.84004

Moustafa, I. M. I., Mohamed, N. M. and Ibrahim, S. M. (2022) Molecular Modeling and Antimicrobial Screening Studies on Some 3-Aminopyridine Transition Metal Complexes. Open Journal of Inorganic Chemistry, 12, 39-56. https://doi.org/10.4236/ojic.2022.123003 DOI: https://doi.org/10.4236/ojic.2022.123003

Ntum, S. J. E., Mariam, C. A., Mainsah, E. N. and Ndifon, P. T. (2020) Synthesis and Crystal Structure of Bis(N’-(Pyridine-3 Carboxaldehyde) Isonicotinoylhydrazone) Zinc(II). Open Journal of Inorganic Chemistry, 10, 25-38. https://doi.org/10.4236/ojic.2020.103004 DOI: https://doi.org/10.4236/ojic.2020.103004

Pawaiya, A., Pawaiya, P., Rajput, S., Agrawal, M. C. and Bhatnagar, R. K. (2014). Synthesis, characterization and antifungal activity of hydrazones Schiff base. International Journal of Current Research, 6(9), 8423-8426.

Pisk, J., Dilovic, I., Hrenar, T., Cvijanovic, D., Pavlovic, G. and Vrdoljak, V. (2020). Effective methods for the synthesis of hydrazones, quinazolines, and Schiff bases: reaction monitoring using a chemometric approach. RSC advances, 10(63), 38566-38577. DOI: 10.1039/d0ra06845d DOI: https://doi.org/10.1039/D0RA06845D

Popiolek, L. (2021). Updated information on antimicrobial activity of hydrazide-hydrazones. International Journal of Molecular Sciences, 22(17), 1-20. https://doi.org/10.3390/ijms22179389 DOI: https://doi.org/10.3390/ijms22179389

Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., … and Koirala, N. (2021). Antibiotics resistance in microbes: History, mechanisms, therapeutics strategies and future prospects. Journal of infection and public health, 14(12), 1750-1766. https://doi.org/10.1016/j.jiph.2021.10.020 DOI: https://doi.org/10.1016/j.jiph.2021.10.020

Uttu, A. J., Sallau, M. S., Iyun, O. R. A. and Ibrahim H. (2023). In vitro antimicrobial studies of some major bioactive compounds isolated from Strychnos innocua (Delile) root bark. Steroids, 195, 1-5. https://doi.org/10.1016/j.steroids.2023.109241 DOI: https://doi.org/10.1016/j.steroids.2023.109241

Vidya D. and Rachana, S. (2015). Green synthesis of nicotinic acid hydrazide schiff bases and its biological evaluation. International Journal of Pharmacy, 5(3), 930-935.

Zhou, Y. X., Li, W. and You, Z. (2023). Synthesis, spectroscopic characterization, crystal structure and antibacterial activity of benzohydrazones derived from 4-pyridinecarboxaldehyde with variouis benzohydrazides. Acta chimica slovenica, 70(2), 240-246. DOI: 10.17344/acsi.2023.8123 DOI: https://doi.org/10.17344/acsi.2023.8123

Published
2024-04-30
How to Cite
MuhammadA., IbrahimH., AyoR. G., FapojuwoD. P., & TshentuZ. R. (2024). ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF SOME HYDRAZONES SYNTHESIZED FROM NICOTINIC ACID HYDRAZIDE. FUDMA JOURNAL OF SCIENCES, 8(2), 235 - 240. https://doi.org/10.33003/fjs-2024-0802-2314