ASSESSMENT OF THE RELATIONSHIP BETWEEN LAND SURFACE TEMPERATURE AND VEGETATION USING MODIS NDVI AND LST TIMESERIES DATA IN KADUNA METROPOLIS, NIGERIA

  • Muhammad Lawal Abubakar Kaduna State University
  • Dorcas Thomas Kaduna Geographic Information Service
  • Muhammad Sambo Ahmed Kaduna State University
  • Auwal Farouk Abdussalam Kaduna State University
Keywords: Land Surface Temperature, NDVI, MODIS, Google Earth Engine

Abstract

This study assessed the relationship between land surface temperature (LST) and vegetation using MODIS NDVI and LST timeseries data in Kaduna Metropolis. MOD13Q1 and MOD11A2 datasets were accessed using Google Earth Engine. Mann-Kendall trend test was used to analyse the trends in LST and NDVI. Pearson Moment Correlation Coefficient and Linear Regression were used to examine the relationship between LST and NDVI. Mann-Kendall trend test revealed monotonic downward trend in NDVI with a Z-statistics of -1.2758, but upward trend in daytime and nighttime LST, with a Z-statistics of 0.567 and 2.107 respectively. For the relationship, vegetation showed strong negative relationship with daytime LST with -0.704. Vegetation also showed weak positive relationship with nighttime LST. The linear regression analysis revealed that vegetation was able to predict 49.5% of LST in Kaduna Metropolis, with R2 value of 0.495 and a standard error of estimate is 2.459. The study concluded that loss of vegetation is responsible for the increase in land surface temperature. The study therefore recommended regulatory agencies should ensure that trees are planted whenever they are removed due to infrastructural development in order to prevent UHI phenomenon and planting of trees should be encouraged in order to regulate the urban climate.

References

Abdussalam, A. F. (2020). Climate Change and Health Vulnerability in Informal Urban Settlements of Kaduna Metropolis. Science World Journal, 15(3), 127–132. https://doi.org/10.47514/swj/15.03.2020.020

Ajibade, L. T., & Okwori, A. (2009). Developing an Information System for Rural Water Supply Scheme in Kaduna State. Journal of Environmental Science, 1(1), 1–8.

Akpu, B., Tanko, A. I., Jeb, D., & Dogo, B. (2017). Geospatial Analysis of Urban Expansion and Its Impact on Vegetation Cover in Kaduna Metropolis, Nigeria. Asian Journal of Environment & Ecology, 3(2), 1–11. https://doi.org/10.9734/ajee/2017/31149 DOI: https://doi.org/10.9734/AJEE/2017/31149

Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/J.WACE.2017.12.002 DOI: https://doi.org/10.1016/j.wace.2017.12.002

Ayanlade, A. (2016). Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment 2016 2:4, 2(4), 1–8. https://doi.org/10.1007/S40808-016-0238-Z DOI: https://doi.org/10.1007/s40808-016-0238-z

Baba, B. M., Abubakar, M. L., Raji, R. B., & Ibrahim, R. (2020). Spatial Distribution of Electric Transformers in Narayi Ward, Chikun Local Government Area of Kaduna State, Nigeria. Kaduna Journal of Geography, 2(2), 114–130. https://www.researchgate.net/publication/346018027_Spatial_Distribution_of_Electric_Transformers_in_Narayi_Ward_Chikun_Local_Government_Area_of_Kaduna_State_Nigeria

Baba, E. B., Maiyaki, D. J., & Musa, I. (2020). Analysis of Urban Land Use Encroachment on River Kaduna Floodplain, Kaduna Metropolis , Kaduna. International Journal of Science and Advanced Innovative Research, 5(1), 62–79.

Baffour-Ata, F., Antwi-Agyei, P., Nkiaka, E., Dougill, A. J., Anning, A. K., & Kwakye, S. O. (2021). Effect of climate variability on yields of selected staple food crops in northern Ghana. Journal of Agriculture and Food Research, 6, 100205. https://doi.org/10.1016/J.JAFR.2021.100205 DOI: https://doi.org/10.1016/j.jafr.2021.100205

Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & Melese, A. M. (2017). Analysis of rainfall trend and variability for agricultural water management in Awash River Basin, Ethiopia. Journal of Water and Climate Change, 8(1), 127–141. https://doi.org/10.2166/WCC.2016.044 DOI: https://doi.org/10.2166/wcc.2016.044

Bennett, J. G., Rains, A. B., Gosden, P. N., Howard, W. J., Hutcheon, A. A., Kerr, W. B., Mansfield, J. E., Rackham, L. J., & Wood, A. W. (1979). Land Resources of central Nigeria; agricultural development possibilities. Volume 3A. The Jema’a Platform Executive Summary. In I. D. Hill (Ed.), Agricultural development possibilities: The Jema’a Platform (Vol. 3B). Land Resources Development Centre.

Bera, B., Shit, P. K., Saha, S., & Bhattacharjee, S. (2021). Exploratory analysis of cooling effect of urban wetlands on Kolkata metropolitan city region, eastern India. Current Research in Environmental Sustainability, 3, 100066. https://doi.org/10.1016/J.CRSUST.2021.100066 DOI: https://doi.org/10.1016/j.crsust.2021.100066

Broadbent, A. M., Coutts, A. M., Tapper, N. J., Demuzere, M., & Beringer, J. (2017). The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theoretical and Applied Climatology 2017 134:1, 134(1), 1–23. https://doi.org/10.1007/S00704-017-2241-3 DOI: https://doi.org/10.1007/s00704-017-2241-3

Chi, Y., Sun, J., Sun, Y., Liu, S., & Fu, Z. (2020). Multi-temporal characterization of land surface temperature and its relationships with normalized difference vegetation index and soil moisture content in the Yellow River Delta, China. Global Ecology and Conservation, 23, e01092. https://doi.org/10.1016/J.GECCO.2020.E01092 DOI: https://doi.org/10.1016/j.gecco.2020.e01092

Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. https://doi.org/10.1016/J.EJRS.2018.05.004 DOI: https://doi.org/10.1016/j.ejrs.2018.05.004

Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography, 37(1), 2–28. https://doi.org/10.1177/0309133312461032 DOI: https://doi.org/10.1177/0309133312461032

Das, D. N., Chakraborti, S., Saha, G., Banerjee, A., & Singh, D. (2020). Analysing the dynamic relationship of land surface temperature and landuse pattern: A city level analysis of two climatic regions in India. City and Environment Interactions, 8, 100046. https://doi.org/10.1016/j.cacint.2020.100046 DOI: https://doi.org/10.1016/j.cacint.2020.100046

Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS Vegetation Index User’s Guide (MOD13 Series) Version 3.0 Ccollection 6) (Vol. 2015, Issue May, p. 38). Vegetation Index and Phenology Lab, The University of Arizona.

Frimpong, B. F., Koranteng, A., & Molkenthin, F. (2022). Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environmental Systems Research, 11(1), 1–13. https://doi.org/10.1186/s40068-022-00269-1 DOI: https://doi.org/10.1186/s40068-022-00269-1

GRID3 - Nigeria. (2022). Geo-Referenced Infrastructure and Demographic Data for Development. National Space Research and Development Agency. https://grid3.gov.ng/dataset/kaduna-operational-ward-boundaries/resources

Hadria, R., Benabdelouahab, T., Mahyou, H., Balaghi, R., Bydekerke, L., El Hairech, T., & Ceccato, P. (2018). Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. International Journal of Remote Sensing, 39(2), 356–373. https://doi.org/10.1080/01431161.2017.1385108 DOI: https://doi.org/10.1080/01431161.2017.1385108

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/J.JHYDROL.2007.11.009 DOI: https://doi.org/10.1016/j.jhydrol.2007.11.009

Harka, A. E., Jilo, N. B., & Behulu, F. (2021). Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. Journal of Hydrology: Regional Studies, 37, 100915. https://doi.org/10.1016/J.EJRH.2021.100915 DOI: https://doi.org/10.1016/j.ejrh.2021.100915

Kafy, A. Al, Dey, N. N., Al Rakib, A., Rahaman, Z. A., Nasher, N. M. R., & Bhatt, A. (2021). Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environmental Challenges, 4, 100190. https://doi.org/10.1016/J.ENVC.2021.100190 DOI: https://doi.org/10.1016/j.envc.2021.100190

Kendall, M. G. (1975). Rank Correlation Methods. (4th Editio). Charles Griffin.

Koko, A. F., Yue, W., Abubakar, G. A., Alabsi, A. A. N., & Hamed, R. (2021). Spatiotemporal influence of land use/land cover change dynamics on surface urban heat island: A case study of abuja metropolis, nigeria. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050272 DOI: https://doi.org/10.3390/ijgi10050272

Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843 DOI: https://doi.org/10.1146/annurev.publhealth.29.020907.090843

Liu, W., Guo, Z., Jiang, B., Lu, F., Wang, H., Wang, D., Zhang, M., & Cui, L. (2020). Improving wetland ecosystem health in China. Ecological Indicators, 113(February), 106184. https://doi.org/10.1016/j.ecolind.2020.106184 DOI: https://doi.org/10.1016/j.ecolind.2020.106184

Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187 DOI: https://doi.org/10.2307/1907187

Nse, O. U., Okolie, C. J., & Nse, V. O. (2020). Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Scientific African, 10, e00599. https://doi.org/10.1016/j.sciaf.2020.e00599 DOI: https://doi.org/10.1016/j.sciaf.2020.e00599

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. https://doi.org/10.1017/9781139016476 DOI: https://doi.org/10.1017/9781139016476

Omonijo, A. G. (2014). Rainfall Amount and Number of Raindays in Kaduna, Northern Nigeria – Implication on Crop Production. International Conference on Agricultural, Ecological and Medical Sciences, Omotosho 1985, 6–12. https://doi.org/10.15242/iicbe.c714048 DOI: https://doi.org/10.15242/IICBE.C714048

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., Pouyat, R. V., Whitlow, T. H., & Zipperer, W. C. (2011). Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9(1), 27–36. https://doi.org/10.1890/090220 DOI: https://doi.org/10.1890/090220

Rakib, A. Al, Akter, K. S., Rahman, N., Arpi, S., & Al Kafy, A. (2020). Analyzing the Pattern of Land Use Land Cover Change and its Impact on Land Surface Temperature: A Remote Sensing Approach in Mymensingh, Bangladesh. 1st International Student Research Conference -2020 Dhaka University Research Society (DURS), University of Dhaka, Bangladesh Analyzing, 1–11.

Richards, D. R., & Belcher, R. N. (2019). Global Changes in Urban Vegetation Cover. Remote Sensing, 12(1), 23. https://doi.org/10.3390/rs12010023 DOI: https://doi.org/10.3390/rs12010023

Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat Island using landsat data: A case study of Metropolitan City Tehran (1988-2018). Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124433 DOI: https://doi.org/10.3390/su10124433

Sa’adi, Z., Yaseen, Z. M., Farooque, A. A., Mohamad, N. A., Muhammad, M. K. I., & Iqbal, Z. (2023). Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40, 100554. https://doi.org/10.1016/J.WACE.2023.100554 DOI: https://doi.org/10.1016/j.wace.2023.100554

Saleh, Y., Badr, A. M., Banna, F. El, & Shahata, A. (2014). Agricultural Land-Use Change and Disappearance of Farmlands in Kaduna Metropolis-Nigeria. Science World Journal, 9(1), 1–7. http://www.scienceworldjournal.org/article/view/13586

Shigute, M., Alamirew, T., Abebe, A., Ndehedehe, C. E., & Kassahun, H. T. (2023). Analysis of rainfall and temperature variability for agricultural water management in the upper Genale river basin, Ethiopia. Scientific African, 20, e01635. https://doi.org/10.1016/J.SCIAF.2023.E01635 DOI: https://doi.org/10.1016/j.sciaf.2023.e01635

Tini, N. H., & Light, B. J. (2020). Impacts of Urban Sprawl on Livability in Kaduna Metropolis, Nigeria. International Journal of Scientific Research in Science and Technology, 7(6), 334–343. https://doi.org/10.32628/ijsrst207644 DOI: https://doi.org/10.32628/IJSRST207644

Ullah, W., Ahmad, K., Ullah, S., Ahmad, A., Faisal, M., Nazir, A., Mehmood, A., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. https://doi.org/10.1016/j.heliyon.2023.e13322 DOI: https://doi.org/10.1016/j.heliyon.2023.e13322

Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Aderemi, A. A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224(February), 52–64. https://doi.org/10.1016/j.atmosres.2019.03.023 DOI: https://doi.org/10.1016/j.atmosres.2019.03.023

Urqueta, H., Jódar, J., Herrera, C., Wilke, H. G., Medina, A., Urrutia, J., Custodio, E., & Rodríguez, J. (2018). Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert. Science of the Total Environment, 612, 1234–1248. https://doi.org/10.1016/j.scitotenv.2017.08.305 DOI: https://doi.org/10.1016/j.scitotenv.2017.08.305

Wan, Z. (2007). MODIS Land Surface Temperature Products Users’ Guide. In LPDAAC (Vol. 8, Issue 3, pp. 169–175). ICESS, University of California.

Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19. https://doi.org/10.1016/j.enbuild.2015.06.046 DOI: https://doi.org/10.1016/j.enbuild.2015.06.046

Xu, S. (2009). An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environmental Monitoring and Assessment, 151(1–4), 289–300. https://doi.org/10.1007/s10661-008-0270-1 DOI: https://doi.org/10.1007/s10661-008-0270-1

Xueru, Z., Xiao, J., & Yue, Q. (2018). Ecological land cold island effect evaluation based on land surface temperature retrieval. 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2018. https://doi.org/10.1109/AGRO-GEOINFORMATICS.2018.8476105 DOI: https://doi.org/10.1109/Agro-Geoinformatics.2018.8476105

Zaharaddeen, I., Baba, I. I., & Ayuba, Z. (2016). Estimation of Land Surface Temperature of Kaduna Metropolis, Nigeria Using Landsat Imageries. Journal of Chemical and Pharmaceutical Sciences, 11(3), 36–42.

Zhang, X., Pang, J., & Li, L. (2015). Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sensing 2015, Vol. 7, Pages 905-921, 7(1), 905–921. https://doi.org/10.3390/RS70100905 DOI: https://doi.org/10.3390/rs70100905

Zhang, Y., Yan, J., Cheng, X., & He, X. (2021). Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2682, 18(5), 2682. https://doi.org/10.3390/IJERPH18052682 DOI: https://doi.org/10.3390/ijerph18052682

Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. https://doi.org/https://doi.org/10.1016/j.rse.2017.03.043 DOI: https://doi.org/10.1016/j.rse.2017.03.043

Published
2024-04-30
How to Cite
AbubakarM. L., ThomasD., AhmedM. S., & AbdussalamA. F. (2024). ASSESSMENT OF THE RELATIONSHIP BETWEEN LAND SURFACE TEMPERATURE AND VEGETATION USING MODIS NDVI AND LST TIMESERIES DATA IN KADUNA METROPOLIS, NIGERIA. FUDMA JOURNAL OF SCIENCES, 8(2), 137 - 148. https://doi.org/10.33003/fjs-2024-0802-2305