• Muhammad Lawal Abubakar Kaduna State University
  • Dorcas Thomas Kaduna Geographic Information Service
  • Muhammad Sambo Ahmed Kaduna State University
  • Auwal Farouk Abdussalam Kaduna State University
Keywords: Land Surface Temperature, NDVI, MODIS, Google Earth Engine


This study assessed the relationship between land surface temperature (LST) and vegetation using MODIS NDVI and LST timeseries data in Kaduna Metropolis. MOD13Q1 and MOD11A2 datasets were accessed using Google Earth Engine. Mann-Kendall trend test was used to analyse the trends in LST and NDVI. Pearson Moment Correlation Coefficient and Linear Regression were used to examine the relationship between LST and NDVI. Mann-Kendall trend test revealed monotonic downward trend in NDVI with a Z-statistics of -1.2758, but upward trend in daytime and nighttime LST, with a Z-statistics of 0.567 and 2.107 respectively. For the relationship, vegetation showed strong negative relationship with daytime LST with -0.704. Vegetation also showed weak positive relationship with nighttime LST. The linear regression analysis revealed that vegetation was able to predict 49.5% of LST in Kaduna Metropolis, with R2 value of 0.495 and a standard error of estimate is 2.459. The study concluded that loss of vegetation is responsible for the increase in land surface temperature. The study therefore recommended regulatory agencies should ensure that trees are planted whenever they are removed due to infrastructural development in order to prevent UHI phenomenon and planting of trees should be encouraged in order to regulate the urban climate.


Abdussalam, A. F. (2020). Climate Change and Health Vulnerability in Informal Urban Settlements of Kaduna Metropolis. Science World Journal, 15(3), 127–132.

Ajibade, L. T., & Okwori, A. (2009). Developing an Information System for Rural Water Supply Scheme in Kaduna State. Journal of Environmental Science, 1(1), 1–8.

Akpu, B., Tanko, A. I., Jeb, D., & Dogo, B. (2017). Geospatial Analysis of Urban Expansion and Its Impact on Vegetation Cover in Kaduna Metropolis, Nigeria. Asian Journal of Environment & Ecology, 3(2), 1–11. DOI:

Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. DOI:

Ayanlade, A. (2016). Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment 2016 2:4, 2(4), 1–8. DOI:

Baba, B. M., Abubakar, M. L., Raji, R. B., & Ibrahim, R. (2020). Spatial Distribution of Electric Transformers in Narayi Ward, Chikun Local Government Area of Kaduna State, Nigeria. Kaduna Journal of Geography, 2(2), 114–130.

Baba, E. B., Maiyaki, D. J., & Musa, I. (2020). Analysis of Urban Land Use Encroachment on River Kaduna Floodplain, Kaduna Metropolis , Kaduna. International Journal of Science and Advanced Innovative Research, 5(1), 62–79.

Baffour-Ata, F., Antwi-Agyei, P., Nkiaka, E., Dougill, A. J., Anning, A. K., & Kwakye, S. O. (2021). Effect of climate variability on yields of selected staple food crops in northern Ghana. Journal of Agriculture and Food Research, 6, 100205. DOI:

Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & Melese, A. M. (2017). Analysis of rainfall trend and variability for agricultural water management in Awash River Basin, Ethiopia. Journal of Water and Climate Change, 8(1), 127–141. DOI:

Bennett, J. G., Rains, A. B., Gosden, P. N., Howard, W. J., Hutcheon, A. A., Kerr, W. B., Mansfield, J. E., Rackham, L. J., & Wood, A. W. (1979). Land Resources of central Nigeria; agricultural development possibilities. Volume 3A. The Jema’a Platform Executive Summary. In I. D. Hill (Ed.), Agricultural development possibilities: The Jema’a Platform (Vol. 3B). Land Resources Development Centre.

Bera, B., Shit, P. K., Saha, S., & Bhattacharjee, S. (2021). Exploratory analysis of cooling effect of urban wetlands on Kolkata metropolitan city region, eastern India. Current Research in Environmental Sustainability, 3, 100066. DOI:

Broadbent, A. M., Coutts, A. M., Tapper, N. J., Demuzere, M., & Beringer, J. (2017). The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theoretical and Applied Climatology 2017 134:1, 134(1), 1–23. DOI:

Chi, Y., Sun, J., Sun, Y., Liu, S., & Fu, Z. (2020). Multi-temporal characterization of land surface temperature and its relationships with normalized difference vegetation index and soil moisture content in the Yellow River Delta, China. Global Ecology and Conservation, 23, e01092. DOI:

Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. DOI:

Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography, 37(1), 2–28. DOI:

Das, D. N., Chakraborti, S., Saha, G., Banerjee, A., & Singh, D. (2020). Analysing the dynamic relationship of land surface temperature and landuse pattern: A city level analysis of two climatic regions in India. City and Environment Interactions, 8, 100046. DOI:

Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS Vegetation Index User’s Guide (MOD13 Series) Version 3.0 Ccollection 6) (Vol. 2015, Issue May, p. 38). Vegetation Index and Phenology Lab, The University of Arizona.

Frimpong, B. F., Koranteng, A., & Molkenthin, F. (2022). Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environmental Systems Research, 11(1), 1–13. DOI:

GRID3 - Nigeria. (2022). Geo-Referenced Infrastructure and Demographic Data for Development. National Space Research and Development Agency.

Hadria, R., Benabdelouahab, T., Mahyou, H., Balaghi, R., Bydekerke, L., El Hairech, T., & Ceccato, P. (2018). Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. International Journal of Remote Sensing, 39(2), 356–373. DOI:

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. DOI:

Harka, A. E., Jilo, N. B., & Behulu, F. (2021). Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. Journal of Hydrology: Regional Studies, 37, 100915. DOI:

Kafy, A. Al, Dey, N. N., Al Rakib, A., Rahaman, Z. A., Nasher, N. M. R., & Bhatt, A. (2021). Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environmental Challenges, 4, 100190. DOI:

Kendall, M. G. (1975). Rank Correlation Methods. (4th Editio). Charles Griffin.

Koko, A. F., Yue, W., Abubakar, G. A., Alabsi, A. A. N., & Hamed, R. (2021). Spatiotemporal influence of land use/land cover change dynamics on surface urban heat island: A case study of abuja metropolis, nigeria. ISPRS International Journal of Geo-Information, 10(5). DOI:

Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55. DOI:

Liu, W., Guo, Z., Jiang, B., Lu, F., Wang, H., Wang, D., Zhang, M., & Cui, L. (2020). Improving wetland ecosystem health in China. Ecological Indicators, 113(February), 106184. DOI:

Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. DOI:

Nse, O. U., Okolie, C. J., & Nse, V. O. (2020). Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Scientific African, 10, e00599. DOI:

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. DOI:

Omonijo, A. G. (2014). Rainfall Amount and Number of Raindays in Kaduna, Northern Nigeria – Implication on Crop Production. International Conference on Agricultural, Ecological and Medical Sciences, Omotosho 1985, 6–12. DOI:

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., Pouyat, R. V., Whitlow, T. H., & Zipperer, W. C. (2011). Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9(1), 27–36. DOI:

Rakib, A. Al, Akter, K. S., Rahman, N., Arpi, S., & Al Kafy, A. (2020). Analyzing the Pattern of Land Use Land Cover Change and its Impact on Land Surface Temperature: A Remote Sensing Approach in Mymensingh, Bangladesh. 1st International Student Research Conference -2020 Dhaka University Research Society (DURS), University of Dhaka, Bangladesh Analyzing, 1–11.

Richards, D. R., & Belcher, R. N. (2019). Global Changes in Urban Vegetation Cover. Remote Sensing, 12(1), 23. DOI:

Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat Island using landsat data: A case study of Metropolitan City Tehran (1988-2018). Sustainability (Switzerland), 10(12). DOI:

Sa’adi, Z., Yaseen, Z. M., Farooque, A. A., Mohamad, N. A., Muhammad, M. K. I., & Iqbal, Z. (2023). Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40, 100554. DOI:

Saleh, Y., Badr, A. M., Banna, F. El, & Shahata, A. (2014). Agricultural Land-Use Change and Disappearance of Farmlands in Kaduna Metropolis-Nigeria. Science World Journal, 9(1), 1–7.

Shigute, M., Alamirew, T., Abebe, A., Ndehedehe, C. E., & Kassahun, H. T. (2023). Analysis of rainfall and temperature variability for agricultural water management in the upper Genale river basin, Ethiopia. Scientific African, 20, e01635. DOI:

Tini, N. H., & Light, B. J. (2020). Impacts of Urban Sprawl on Livability in Kaduna Metropolis, Nigeria. International Journal of Scientific Research in Science and Technology, 7(6), 334–343. DOI:

Ullah, W., Ahmad, K., Ullah, S., Ahmad, A., Faisal, M., Nazir, A., Mehmood, A., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. DOI:

Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Aderemi, A. A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224(February), 52–64. DOI:

Urqueta, H., Jódar, J., Herrera, C., Wilke, H. G., Medina, A., Urrutia, J., Custodio, E., & Rodríguez, J. (2018). Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert. Science of the Total Environment, 612, 1234–1248. DOI:

Wan, Z. (2007). MODIS Land Surface Temperature Products Users’ Guide. In LPDAAC (Vol. 8, Issue 3, pp. 169–175). ICESS, University of California.

Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19. DOI:

Xu, S. (2009). An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environmental Monitoring and Assessment, 151(1–4), 289–300. DOI:

Xueru, Z., Xiao, J., & Yue, Q. (2018). Ecological land cold island effect evaluation based on land surface temperature retrieval. 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2018. DOI:

Zaharaddeen, I., Baba, I. I., & Ayuba, Z. (2016). Estimation of Land Surface Temperature of Kaduna Metropolis, Nigeria Using Landsat Imageries. Journal of Chemical and Pharmaceutical Sciences, 11(3), 36–42.

Zhang, X., Pang, J., & Li, L. (2015). Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sensing 2015, Vol. 7, Pages 905-921, 7(1), 905–921. DOI:

Zhang, Y., Yan, J., Cheng, X., & He, X. (2021). Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2682, 18(5), 2682. DOI:

Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. DOI:

How to Cite