A MONTE CARLO STUDY ON THE PERFORMANCE OF EMPIRICAL THRESHOLD AUTOREGRESSIVE MODELS UNDER VIOLATION OF STATIONARITY ASSUMPTIONS

Authors

  • Lateef Yusuf
  • Ahmad Abdulkadir
  • Bello Abdulrasheed
  • Ahmed Abdulazeez Abdullahi

DOI:

https://doi.org/10.33003/fjs-2024-0801-2258

Keywords:

Stationarity, Exponential, Regimes, Auto regressive

Abstract

One of the major importance of modeling in time series is to forecast the future values of that series. And this requires the use of appropriate method to fit the time series data which are dependent on the nature of the data. We are aware that most financial and economic data are mostly non-stationary. . The study is an extension of the work of Romsen et al (2020) which dealt with forecasting of nonlinear data that are stationary with only two threshold regimes. The study recommendations that In further research, the above models can be extended to other regimes (such as the 3 – regimes Threshold models) as well as comparing them with other regimes to understand the behaviors of the other regimes in selecting a suitable model for a data. STAR (2,1) and SETAR (2,2) are recommended to fit and forecast nonlinear data of trigonometric, exponential and polynomial forms respectively that are non-stationary.

References

Abatih, E., Ron, L., Speybroeck, N., Williams, B., & Berkvens, D. (2015). Mathematical analysis of the transmission dynamics of brucellosis among bison. Mathematical Methods in the Applied Sciences, 38(17), 3818-3832.

Ainseba, B. E., Benosman, C., & Magal, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission. Journal of biological dynamics, 4(1), 2-11.

Akhvlediani, T., Bautista, C. T., Garuchava, N., Sanodze, L., Kokaia, N., Malania, L., ... & Trapaidze, N. (2017). Epidemiological and clinical features of brucellosis in the country of Georgia. PLoS One, 12(1), e0170376.

Al-Tawfiq, J. A., & AbuKhamsin, A. (2009). A 24-year study of the epidemiology of human brucellosis in a health-care system in Eastern Saudi Arabia. Journal of infection and public health, 2(2), 81-85.

Brouwer, A. F., Weir, M. H., Eisenberg, M. C., Meza, R., & Eisenberg, J. N. (2017). Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS computational biology, 13(4), e1005481.

Corbel, M. J. (1997). Brucellosis: an overview. Emerging infectious diseases, 3(2), 213.

Corbel, M. J. Brucellosis in humans and animals: World Health Organization. 2006.

De Souza, V. A. F., Neto, J. S. F., Amaku, M., Dias, R. A., Telles, E. O., Grisi-Filho, J. H. H., ... & Ferreira, F. (2016). Mathematical modeling of bovine brucellosis control using the RB51 vaccine. Semina: Ciências Agrárias, 37(5), 3767-3775.

Godfroid, J. (2002). Brucellosis in wildlife. Revue Scientifique et Technique-Office international des épizooties, 21(1), 277-286.

Godfroid, J., Garin-Bastuji, B., Saegerman, C., & Blasco, J. M. (2013). Brucellosis in terrestrial wildlife. Revue Scientifique et Technique. Office International des Epizooties.

Godfroid, J., Scholz, H. C., Barbier, T., Nicolas, C., Wattiau, P., Fretin, D., ... & Letesson, J. J. (2011). Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Preventive veterinary medicine, 102(2), 118-131.

Hou, Q., Sun, X., Zhang, J., Liu, Y., Wang, Y., & Jin, Z. (2013). Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China. Mathematical biosciences, 242(1), 51-58.

Mohammed, B. A., Yahya A., & Farah A. A. (2015). A Mathematical Analysis of the Effect of Control of Plasmodium Knowlesi Malaria. Pak. J. Statist. Vol. 31(5), 483-514

Moreno, E. (2014). Retrospective and prospective perspectives on zoonotic brucellosis. Frontiers in microbiology, 5, 213.

Morris Jr, J. G. (Ed.). (2013). Foodborne infections and intoxications. Academic Press.

Shevtsova, E., Shevtsov, A., Mukanov, K., Filipenko, M., Kamalova, D., Sytnik, I., ... & Ramanculov, E. (2016). Epidemiology of brucellosis and genetic diversity of Brucella abortus in Kazakhstan. PLoS One, 11(12), e0167496.

Zhang, J., Sun, G. Q., Sun, X. D., Hou, Q., Li, M., Huang, B., ... & Jin, Z. (2014). Prediction and control of brucellosis transmission of dairy cattle in Zhejiang Province, China. Plos one, 9(11), e108592.

Zhou, L., Fan, M., Hou, Q., Jin, Z., & Sun, X. (2018). Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China. Mathematical Biosciences & Engineering, 15(2), 543.

Zinsstag, J., Roth, F., Orkhon, D., Chimed-Ochir, G., Nansalmaa, M., Kolar, J., & Vounatsou, P. (2005). A model of animal–human brucellosis transmission in Mongolia. Preventive veterinary medicine, 69(1-2), 77-95

Published

2024-03-04

How to Cite

Yusuf, L., Abdulkadir, A., Abdulrasheed, B., & Abdullahi, A. A. (2024). A MONTE CARLO STUDY ON THE PERFORMANCE OF EMPIRICAL THRESHOLD AUTOREGRESSIVE MODELS UNDER VIOLATION OF STATIONARITY ASSUMPTIONS. FUDMA JOURNAL OF SCIENCES, 8(1), 141 - 154. https://doi.org/10.33003/fjs-2024-0801-2258