COMPOSITIONAL AND WEATHERABILITY INDICES OF GETSO KAOLIN DEPOSITS FOR POZZOLANA PRODUCTION
Abstract
Kaolin is an aluminio-silicate mineral naturally distributed within the earth’s crust formed from the weathering of rich feldspartic rocks. The compositional requirements of Getso kaolin deposits for pozzolana production have been carried out. The kaolin deposits were hosted by the rhyolitic rocks of the basement complex of North-Western Nigeria. Three samples from each five locations at different depths were collected and analysed using Free Swelling Ratio (FSR), Free Swelling Index (FSI), X-Ray Fluorescence Spectrometry (XRF) and Scanning Electron Microscopy/Electron Dispersive X-Ray spectroscopy (SEM/EDS). The FSI and FSR ranged between 0-6-0.9 and 16-36 revealing non-swelling and non-expansive Kaolinitic material. The XRF results showed the average concentration of SiO2+ Al2O3+Fe2O3: point 1 (78.99 wt.%); point 2 (78.62 wt.%); point 3 (79.14 wt.%); point 4 (80.10 wt.%) and point 5 (80.0 wt.%) suggested to be classified as N pozzolana (ASTMC 618). The Fe2O3/MgO versus SiO3 indicated the samples were products of the calc-alkaline series which is an indication of light colour kaolin deposits. The computed Chemical Index of Alteration (CIA: 91.34), Chemical Index of Weatheribility (CIW: 98.13), Index of compositional variability (CIV: 0.29), Silica Modulus Ratio (SM: 1.77), Lime Silica Ratio (LSR: 0.14) and Aluminum Iron Ratio (AIR: 30.0) indicated very strong weathering intensity high matured, high silica moderate aluminum and less ferrite. The studied kaolin could be utilized for the production of pozzolana after its being beneficiated to remove the TiO2.
References
Alabi, A. A., Garba I., Danbatta, U. & Najime, T. (2015). Mineralogy and Geochemical Characteristics of Clay Occurrence in Central Bida Basin Northwestern Nigeria. Journal of Natural Sciences Research, 5 (20), 71-79
Amupitan, A. J. (2021). Mineralogy, Geochemistry and Potential Uses of Clay Inpandogari Area, North-Central, Nigeria, M.tech thesis,FUT Minna.
ASTM C618 (American Society for Testing and Materials), (2015). Standard Specificationfor Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in concrete, ASTMC concrete, ASTMC618-15,West Conshohocken, USA.
Bahlburg H. & Dobrzinski N. (2009). A review of the chemical index of alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud E., Halverson, G.P. and Shields, G.A. (eds): The Geological Record of Neoproterozoic Glaciations, Geological Society, London, Memoir.
Baiyegunhi, C., Liu, K. & Gwavava, O. (2017). Daigeneisis and reserviuour properties of the Permian Ecca group sandstones and mudrucks in the Eastern Cape province, South Afria. Mineral, 88, 1-26. DOI: https://doi.org/10.1515/geo-2017-0042
Bello, A. M., Ismail, I. M. & Yalwa, I. R. (2017). Physicochemical Evaluation of Industrial Potentialities of Getso Kaolin, ChemSearch Journal, 8(2), 16 – 21.
Benea, M. & Gorea, M. (2004). Mineralogy and Technological Properties of Some Kaolin Types Used in the Ceramic Industry. Studia Universitatis Babes-Bolyai, Geologia, XLIX: 33-39 DOI: https://doi.org/10.5038/1937-8602.49.1.3
BS 1377: II (1990).Methods of Testing Soils for Civil Engineering Purposes. British Standards Institute (BSI).
Bukalo, N. N., Ekosse, G. E., Odiyo, J. O., Jason, S. & Ogola, J. S. (2017). Geochemistry of selected kaolins from Cameroon and Nigeria,Journal Open Geosciences, https://doi.org/10.1515/geo-2017-0045. DOI: https://doi.org/10.1515/geo-2017-0045
Cox, R.., Lowe, D. R. & Cullers R. L. (1995): The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimical Cosmochimica Acta, 59 (14), 2919–2940 DOI: https://doi.org/10.1016/0016-7037(95)00185-9
Danladi S. M. (2014). Roads and Building Research in Nigeria: Panacea to Nigeria's Quest for Infrastructural Development. Nigerian Academy of Engineering (NAE) 2014 Academy Lecture, Lagos– Nigeria.
Ekosse G. (2002). The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications, Applied Clay science, 16, 301–320 DOI: https://doi.org/10.1016/S0169-1317(99)00059-9
Ekosse, G. E. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization, Applied Clay Science, 50, 212–236. DOI: https://doi.org/10.1016/j.clay.2010.08.003
Fernandez, R., Martirena, F. & Scrivener, K. L. (2010). The origin of the pozzolanic activity of calcined clayminerals: A comparison between kaolinite, illite and montmorillonite, Cement and Concrete Research1(41), 113–122. DOI: https://doi.org/10.1016/j.cemconres.2010.09.013
Garcia-Valles, M., Alfonso, P., Martinez, S. and Roca, N. (2020). Mineralogical and thermal characterization of kaolinitic clays from Terra Alta (Catalonia, Spain). Minerals 2020, 10, 142; doi:10.3390/min10020142. DOI: https://doi.org/10.3390/min10020142
Glen, C. N. & Richard, B. (2002). Ceramics: A Pottery handbook, 6th Ed., Wadsworth Thomson learning Inc., USA. 113-118.
Hans-Rudolf, W. & Andrei, B. (2004). Minerals, their Constitution and Origin, Cambridge University press, Cambridge, U.K., 3-465.
Hubadillah, S. K., Haruna, Z., Othman, M. H. D., Ismail, A. F. & Gani, P. (2016). Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. Journal of Asian Ceramic Societies 4:164–177. DOI: https://doi.org/10.1016/j.jascer.2016.02.002
Jensen, l. S. (1976). A New Cation Plot for classifying Subalkaliac Volcanic Rocks. Ontario Geological Survey Miscellaneous, Paper 66.
Krause, H. J. (1984). Ceramic Pigments. In Process Mineralogy of Ceramic Materials. Ferdinand Enke Publishers Stuttgart 1984: 196-207.
Murray, H. (2006). Current industrial applications of clays. Clay Science, 2, 106-112.
Nebsitt, H. W. & Young, G. M. (1982).Chemical Process Affecting Alkalis and Alkaline Earth Metals during weathering, Geochim. Cosmochim.acta. 44, 1659-666. DOI: https://doi.org/10.1016/0016-7037(80)90218-5
Obaje, N.G. (2009).Geology and mineral resources of Nigeria. Springer Publisher DOI: https://doi.org/10.1007/978-3-540-92685-6
Prakash, K. & Sridharan, A. (2004). Free Swell Ratio and Clay Mineralogy of Fine-grained Soil.,Geotechnical Testing Journal, ASTM, 27(2), 220–225. DOI: https://doi.org/10.1520/GTJ10860
Rao, D. S., Vijayakumar, T. V., & Angadi, S, (2010). Effects of modulus and dosage of sodium silicate on limestone flotation, Maejo International Journal of Science and Technology. 4, 397–404
Ratcliffe, K. T., Morton, A., Ritcey, D. & Evenchick, C. E. (2007). Whole rock geochemistry and heavy mineral analysis as exploration tools in the Bowser and Sustut Basins, British Colombia, Canada. Journal of Canadian Petroleum Geology, 55, 320–328 327. DOI: https://doi.org/10.2113/gscpgbull.55.4.320
Singh, M., Sharma, M. and Tobschall, H. J. ( 2005). Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of Gomati River. Applied Geochemistry, 20, 1-21. DOI: https://doi.org/10.1016/j.apgeochem.2004.07.005
Sridharan, A. and Prakash, K. (2000). Classification procedures for expansive soils. Geotechnical Engineering, Proc. ICE (UK), 143: 235–240. DOI: https://doi.org/10.1680/geng.2000.143.4.235
Vaga, G. (2007). Effect of acid treatment on physicochemical properties of kaolin clay. Epitoanyag, 59, 4-8.
Yahaya, S. S., Jikan, S. S., Badarulzaman, N. A. & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin,Path of Science, Vol. 3 (10), pp. 1001–1004. DOI: https://doi.org/10.22178/pos.27-1
Yaya, A. (2017). Characterisation and identification of local kaolin clay from Ghana: A potential material for electroporcelain insulator fabrication. Applied Clay Science, 15(3), 45 - 98. DOI: https://doi.org/10.1016/j.clay.2017.09.015
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences