DETERMINATION OF ANTIBIOSIS OF Trichoderma species AGAINST FUNGI ASSOCIATED WITH CORN (Zea Mays L.) SPOILAGE

  • Onyinyechi Ndimele Akomah-Abadaike Microbiology Technology/University of Port Harcourt
  • P. O. Anosike
Keywords: Biological control, Trichoderma Species, Corn Spoilage, Antagonistic, Penicillium spp.

Abstract

Biological control of food spoilage microorganisms is gaining more attention because it is a safe and cheap technique. This study evaluated the antagonistic potential of Trichoderma species against corn spoilage fungi by plate co-culture technique for seven days. Fungal isolates from corn spoilage were examined morphologically and microscopically. The percentage growth inhibition (PGI) of Trichoderma species against the corn spoilage fungi were A. flavus (15%), A. niger (14%), A. terreus (62.9%), Fusarium spp. (5.9%), Nigrospora spp. (61.4%) and Penicillium spp. (62.5%). The result obtained in this study revealed that Trichoderma spp. had significant inhibitory effects against the growth of fungal pathogens associated with corn spoilage. Therefore, it could be explored for control of post-harvest fungal spoilage of corn. It is recommended that in order to compare the antagonistic strength of the Trichoderma species, different species of Trichoderma should be tested against the same spoilage fungi.

References

Abd-Rabboh, M.S. and Abdel-Shafea, Y.M. (2021). Attempts to assess the role of some biocontrol agents in reducing corn fungal infection and improving its growth parameters. Minia Journal of Agricultural Research and Development, 41(1):43-65. DOI: 10.21608/mjard.2021.210086 DOI: https://doi.org/10.21608/mjard.2021.210086

Abhiram, P. and Masih, H. (2018). In vitro Antagonism of Trichoderma viride against Fusarium oxysporum strains. Journal of Pharmacognosy and Phytochemistry, 7(2):2816-2819

Anjum, N., Shahid, A.A., Iftikhar, S., Mubeen, M., Ahmad, M.H., Jamil, Y., Rehan, M.K., Aziz, A., Iqbal, S. and Abbas, A. (2020). Evaluations of Trichoderma isolates for biological control of Fusarium wilt of chili. Plant Cell Biotechnology and Molecular Biology, 21(59-60):42

Dukare, A.S., Paul, S., Nambi, V.E., Gupta, R.K., Singh, R., Sharma, K. and Vishwakarma, R.K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition, 59(9):1498-1513. DOI: 10.1080/10408398.2017.1417235 DOI: https://doi.org/10.1080/10408398.2017.1417235

Espinosa-Ortiz, E.J., Rene, E.R. and Gerlach, R. (2022). Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Critical Reviews in Biotechnology, 42(3):.361-383. doi: 10.1080/07388551.2021.1940831 DOI: https://doi.org/10.1080/07388551.2021.1940831

Gwa, V.I and Ekefan, E.J (2017) Fungal Organism Isolated from Rotted White Yam (Dioscorea rotundata) tubers and Antagonistic Potential of Trichoderma harzianum against Colletotrichum species. Agricultural Research and Technology, 10: 58 – 66. DOI: https://doi.org/10.19080/ARTOAJ.2017.10.555787

Kaul, J., Jain, K. and Olakh, D. (2019). An overview on role of yellow maize in food, feed and nutrition security. International Journal of Current Microbiology and Applied Sciences, 8(2):3037-3048. Doi: 10.20546/ijcmas.2019.802.356 DOI: https://doi.org/10.20546/ijcmas.2019.802.356

Khan, R.A.A., Najeeb, S., Hussain, S., Xie, B. and Li, Y. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8(6):817. https://doi.org/10.3390/microorganisms8060817 DOI: https://doi.org/10.3390/microorganisms8060817

Madbouly, A.K., Rashad, Y.M., Ibrahim, M.I. and Elazab, N.T. (2023). Biodegradation of aflatoxin b1 in maize grains and suppression of its biosynthesis-related genes using endophytic Trichoderma harzianum AYM3. Journal of Fungi, 9(2):209. DOI: 10.3390/jof9020209 DOI: https://doi.org/10.3390/jof9020209

Mendoza, J.R., Kok, C.R., Stratton, J., Bianchini, A. and Hallen-Adams, H.E. (2017). Understanding the mycobiota of maize from the highlands of Guatemala, and implications for maize quality and safety. Crop Protection, 101:5-11. DOI: 10.1016/j.cropro.2017.07.009 DOI: https://doi.org/10.1016/j.cropro.2017.07.009

Morales-Cedeño, L.R., del Carmen Orozco-Mosqueda, M., Loeza-Lara, P.D., Parra-Cota, F.I., de Los Santos-Villalobos, S. and Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research, 242:126612. https://doi.org/10.1016/j.micres.2020.126612 DOI: https://doi.org/10.1016/j.micres.2020.126612

Mukherjee, A., Verma, J.P., Gaurav, A.K., Chouhan, G.K., Patel, J.S. and Hesham, A.E.L. (2020). Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture. Applied Microbiology and Biotechnology, 104:1497-1510. DOI: 10.1007/s00253-019-10321-3 DOI: https://doi.org/10.1007/s00253-019-10321-3

Oli Awoke, S. (2023). Genotype by environment interaction and grain yield stability of maize (Zea mays L.) three way hybrids in Ethiopia (Doctoral dissertation, Haramaya University)

Prabhu, G., Bhat, D., Bhat, R.M. and Selvaraj, S. (2022). A critical look at bioproducts co-cultured under solid state fermentation and their challenges and industrial applications. Waste and Biomass Valorization, 13(7):3095-3111. https://doi.org/10.1007/s12649-022-01721-0 DOI: https://doi.org/10.1007/s12649-022-01721-0

Siddiquee, S. (2017). Collection and processing for Trichoderma specimen. In V.K. Gupta and M.G. Tuhoy (Eds.), Practical handbook of the biology and molecular diversity of Trichoderma species from Tropical Regions. (pp 17-27). Springer International Publishing AG, Cham. DOI 10.1007/978-3-319-64946-7_2 DOI: https://doi.org/10.1007/978-3-319-64946-7_2

Sobowale, A.A., Uzoma, L.C., Aduramigba-Modupe, A.O. and Bamkefa, B.A. (2022). Fungitoxicity of Trichoderma longibrachiatum (Rifai) metabolites against Fusarium oxysporum, Aspergillus niger and Aspergillus tamarii. American Journal of Plant Sciences, 13(7):984-993. doi: 10.4236/ajps.2022.137065 DOI: https://doi.org/10.4236/ajps.2022.137065

Yassin, M.T., Mostafa, A.A.F. and Al-Askar, A.A. (2022). In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. Journal of Taibah University for Science, 16(1):57-65. DOI: 10.1080/16583655.2022.2029327 DOI: https://doi.org/10.1080/16583655.2022.2029327

Yuliantoro, I.D. and Prihatiningrum, A.E. (2023). Exploration and inhibition test of Penicillium sp. In Vitro by Trichoderma. In IOP Conference Series: Earth and Environmental Science (Vol. 1242, No. 1, p. 012012). IOP Publishing. DOI: 10.1088/1755-1315/1242/1/012012 DOI: https://doi.org/10.1088/1755-1315/1242/1/012012

Zhang, H., Serwah Boateng, N.A., Ngolong Ngea, G.L., Shi, Y., Lin, H., Yang, Q., Wang, K., Zhang, X., Zhao, L. and Droby, S. (2021a). Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Comprehensive Reviews in Food Science and Food Safety, 20(5):4906-4930. https://doi.org/10.1111/1541-4337.12783 DOI: https://doi.org/10.1111/1541-4337.12783

Zhang, W., Yang, J.Y., LU, X., LIN, J.M. and Niu, X.L. (2021b). A preliminary study of the antifungal activity and antagonism mechanisms of Trichoderma spp. against turfgrass pathogens. Acta Prataculturae Sinica, 30(9):137. DOI: 10.11686/cyxb2020333

Published
2024-03-10
How to Cite
Akomah-Abadaike O. N., & Anosike P. O. (2024). DETERMINATION OF ANTIBIOSIS OF Trichoderma species AGAINST FUNGI ASSOCIATED WITH CORN (Zea Mays L.) SPOILAGE. FUDMA JOURNAL OF SCIENCES, 8(1), 324 - 328. https://doi.org/10.33003/fjs-2024-0801-2252