EXPERIMENTAL DEMONSTRATION OF ELECTRICAL POWER GENERATION USING STATIONARY EXERCISE BICYCLE COUPLED WITH WIND TURBINE REGULATOR
DOI:
https://doi.org/10.33003/fjs-2023-0706-2213Keywords:
Stationary bicycle, automotive alternator, wind turbine regulator, voltage regulation, RPMAbstract
The small power generation using exercise bicycle is one of the current areas patronized by researchers. This is due to the two major benefits obtainable from the exercise machine, the benefit of exercising one’s body and the utilization of electrical power generated. Wind turbine regulator is specifically designed to regulate the output voltage of a wind turbine generator, which is characterized by varying speed and hence varying output power. The exercise bicycle driven alternator has a similarity with wind turbine generator in terms of variable speed, especially when ridden by different personalities. This paper demonstrates how small power can be generated using exercise bicycle. Further, the paper analyzes the performance of the by regulating its output using small wind turbine regulator. The result shows that, a regulated output within the range of 12V is obtained for all the tested loads, which makes the system more compatible with all types of 12V DC loads. Also the excitation voltage of the machine is improved from 4.5V (1.22A) using the diodes rectifier to 2.5V (0.81A) when the wind turbine regulator is used. With the improved power generation in this work the exercise bicycle will be a better alternative source for small power generation which can be used in DC lightings, DC fans, charging batteries and laboratory experiments.
References
Abd Razak, N. H., Khairuddin, N., Ismail K. N., and Musa M. (2018).Coagulant from Leucaena leucocephala for Chromium Removal. Integrated Operational Plan Conference Series.: Materials Science and Engineering 358, 012025
Abida, B. and Harikrishna (2008). Study on the Quality of Water in Some Streams of Cauvery River CODEN ECJHAO E-Journal of Chemistry e-journals.net. 5(2): 377-384.
Acidification Increases Copper Toxicity Differentially in Two Key Marine Invertebrates with
Ademoroti, C.M.A. (2006). Standard Method for Water and Effluents Analysis. 1st Edition. Foludex press limited, Ibadan, Nigeria
Ahipathi, M.V. and Puttaiah, E.T. (2006). Ecological Characteristics Of Vrishabhavathi River in Bangalore (India). Environmental Geology. 49: 1217-1222.
Andong, F. A., Ezenwaji, N. E., Melefa, T. D., Hinmikaiye, F. F., Obiechina Vitus Nnadi, O. V., and Oluwafemi, O. (2019). Assessment of the Physical and Chemical Properties of Lake Oguta (Nigeria) In Relation to the Water Quality Standard Established by the Nigerian Federal Ministry Of Water Resources. Advances in Oceanography and Limnology, 10:8522.
Angelier, E. (2003). Ecology of Streams and Rivers. BIOS Scientific Publisher Limited, 228.
APHA, (1998). Standard Methods for the Examination of Water and Wastewater 20th eds. American Public Health Association. American Water Works Association Water Environment Federation. Washington, D.C.
Bremigan, M. Soranno, P. González, M. Bunnell, D. Arend, K. Renwick, W. Stein, R. and Vanni, M. (2008). Hydrogeomorphic Features Mediate the Effects of Land Use/Cover on Reservoir Productivity and Food Webs,” Limnology and Oceanography, 53(4), 1420-1433.
C., Rädecker, N., Frölicher, T. L., Mumby, P. J., Pandolfi, J. M., Suggett, D. J., Voolstra, C. R., Aranda, M., and Duarte, C. M. (2022). Projecting Coral Responses to Intensifying Marine Heatwaves under Ocean Acidification. Global Change Biology, 28, 1753–1765.
Carpenter, S. Caraco, N. Correll, D. Howarth, R. Sharpley, A. and Smith, V. “Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen,” Ecological Applications, 8(3):559-568.
Chapman, D. (1993). “Assessment of Injury to Fish Populations: Clark Fork River NPL Sites,
Chirag, R. S. (2016). Which Physical, Chemical and Biological Parameters of water determine its quality? Solid Liquid Resource Management in Smart Cities. Jain Irrigation System Limited, Technical Report, 75. DOI: 10.13140/RG.2.2.29178.90569.
Choudhary, S., Sharma, S. K., Sharma, B. K., and Upadhyay, B. (2021). Water Quality Analysis Of Anasagar Lake, Ajmer, Rajasthan. Asian Journal of Advances in Research 11(1):13-20.
Clark, M. A. L. (2013). Lake Lemon Monitoring Program 2012 Results. Prepared by: School of Public and Environmental Affairs Indiana University Bloomington, Indiana 47405 Clerk, R. B. (1986). Marine Pollution. Clarandon Press, Oxford, 256.
Conservation biology, 27(15): 245-247.
De, A. K. (2002). Environmental Chemistry, 4th Edition, New age international publishers New Delhi 245-252.
Distinct Acid-Base Responses. Scientific Reports, 6:21554. DOI https://doi.org/10.1038/srep21554
Djurichkovic, L. D., Donelson, J. M., Fowler, A. M., Feary, D. A., and Booth, D. J. (2019). The Effects of Water Temperature on the Juvenile Performance of Two Tropical Damselfishes Expatriating to Temperate Reefs. Scientific Reports, 9, 13937.
DWAF (1996). South Africa Water Quality Guidelines for Domestic Use, 2 nd edition, Pretoria, South Africa.
Egemen, O. (2011). Water Quality. Ege University Fisheries Faculty Publication, Izmir 14:1-150.
Ekhande, A. (2015). Hydrobiological Studies of Yashwant Lake, Toranmal (M.S.) with Special Reference to Selected Biodiversity. Laxmi book Publication 258/34 Raviwar Peth Solapur Maharashtra, India.
Ekubo, A. T. and Abowei, J. F. N. (2011). Aspects of Aquatic Pollution in Nigeria. Research Journal of Environmental and Earth Sciences, 3(6), 673-693.
Fabian, Z. L. and Abubakar, K. A. (2015). Water Quality Assessment of Coca Cola Wastewater reservoir in Maiduguri, Borno State Nigeria. International organization of scientific research journal of pharmacy and biological science, 10(5), 39-43.
Fierro, P., Valdoveno, C., Vargas-Chacoff, L., Bertran, C., and Arismendi, I. (2017). Microinvertebrates and Fishes as Bioindicators of Stream Water Pollution Intech Open http://dx.doi.org/10.5772/65084
Fondriest Environmental, Inc. “Turbidity, Total Suspended Solids and Water Clarity.” Fundamentals of Environmental Measurements. 13 Jun. 2014. Web.
Gertrud, K. M. . Bruce, D. L. Pei, S. L and Lewis, A. M. (2013). Quantification of Internal Phosphorus Load in Large, Partially Polymictic and Mesotrophic Lake Simcoe Ontario, Journal of Great Lakes Research, 39. 271–279.
González, G., Lodge, D. J., McGinley, K., Jennings, L. N., Heartsill-Scalley, T.,Wood, T. E. (2014). Tropical Forest Responses to Global Change: Evidence from the Luquillo Experimental Forest. 99th ESA Annual Meeting (August 10 -- 15, 2014).
Gowri, G., Chalapathi, K., and Shiva Prasad, G. (2021). Summer Kills In Fish Ponds and Its Prevention Measures. Science for Agriculture and Allied Sector A Monthly e News Letter. 3(6) 31-37.
Hess, S. Wenger, S. A. Ainsworth, T. D. and Rummer, J. L. (2015). Exposure of Clownfish Larvae to Suspended Sediment Levels Found on the Great Barrier Reef: Impacts on Gill Structure and Microbiome. Scientific Reports, 5, 10561.
Idowu, R. T.., Inyang, N. M. and Eyo, J. E. (2004). Physico-chemical Parameters of an African Arid Zone Man-made Lake. Animal Research international,1(2): 113-119
Jain, S. M. Sharma, M. and Thakur, R. (1996). Seasonal Variation in Physico-chemical Parameters of Halali Reservoir of Vidisha District. Indian Journal of Ecobiology., 8(3): 181-188.
Jane, O. Francis, O. Joseph, O., and William, S. (2020). “Assessment of Available Phosphates and Nitrates Levels in Water and Sediments of River Isiukhu, Kenya.” Applied Ecology and Environmental Sciences, 8(3): 119-127.
Jiang, X., Wang, W., Wang, S., Zhang, B., & Hu, J. (2012). Initial Identification of Heavy Metals Contamination in Taihu Lake, a Eutrophic Lake in China. Journal of Environmental Sciences, 24(9):1539–1548.
Journal of Water Research, 194, 116894.
Kalinkina, N.M., Kulikova, T.P., Morozov, A.K., and Vlasova, L.I. (2003). Causes of Technolgenic Changes in a Freshwater Zooplanktonic Community. Biological Bulletin, 30, 637-632.
Kannan, V. (1978). The Limnology of Sathiar: A freshwater impoundment. Ph.D Thesis, submitted to Maduria Kamaraj University, Maduria India.
Klein, S. G., Geraldi, N. R., Anton, A., Schmidt-Roach, S., Ziegler, M., Cziesielski, M. J., Martin,
Lewis, C., Ellis, R. P., Vernon, E., Elliot, K., Newbatt, S., and Wilson, R. W. (2016). Ocean
Lønborg, C. Müller, M. Butler, E. C. V. Jiang, S. Keat Ooi, S. Huong Trinh, D. Yee Wong, P. Ali, S. M. Cui, C. Siong, W, B. Yando, E. S. Friess, D. A. Rosentreter, J. A. Eyre, B. D. Martin, P. (2021). Nutrient Cycling in Tropical and Temperate Coastal Waters: is Latitude Making a Difference?, Estuarine Coastal and Shelf Science. 262. 1-17.
Ma, S. N., Wang, H. J., Wang, H. J., Zhang, M., Li, Y., Bian, S. J., Liang, X. M., Søndergaard, M., and Jeppesen, E. (2021). Effects of Nitrate on Phosphorus Release from Lake Sediments.
Ma, Z., Chen, K., Yuan, Z., Bi, J., and Huang, L. (2013) Ecological Risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes. Journal of Environmental Quality 42: 341–350.
Mahender, J., Ramesh, K., and Rajashekhar, A.V. (2016). Assessment of water quality with reference to fish production in Chenugonipally Pedda Cheruvu, Mahabubnagar districts, Telangana. International Journal of Applied Biology and Pharmaceutical Technology,7(2):229-234.
Malhotra, S.K. and Zanoni A.E. (1970) Chloride interference in nitrate nitrogen determination, J. Amer. Wat. Works Assoc., 62, 568-571.
Mamun, M., and An, K.G. (2018). Ecological health assessments of 72 streams and rivers in relation to water chemistry and land-use patterns in South Korea. Turkish Journal of Fisheries and Aquatic Science, 18, 871–880.
Meme, F. , Arimoro, F. and Nwadukwe, F. (2014) Analyses of Physical and Chemical Parameters in Surface Waters nearby a Cement Factory in North Central, Nigeria. Journal of Environmental Protection, 5, 826-834.
Montana,” In: J. Lipton, Ed., Aquatic Resources Injury Assessment Report, Upper Clark Fork River Basin, Montana Natural Resource Damage Assessment Program, Helena, Montana.
Oluowo, E. F. and Isibor, P. O. (2016). Assessment of Heavy Metals in Surface Water and Bottom Sediment of Ekpan Creek, Effurun, Delta State, Nigeria Journal of Applied Life Sciences International 8(4):1-10.
Oluyemi, E. A.; Adekunle, A. S.; Adenuga, A. A. and Makinde, W. O. (2010). Physico-chemical properties and heavy metal content of water sources in IfeNorth local government area of Osun state, Nigeria. African J. Environ. Sci. Technol., 4(10):691–697.
Packman, C. E., Gray, T. N. E., and Collar, N. J. (2013). Rapid Loss of Cambodia's Grasslands.
Process of Kalimalang River. Serambi Engineering, 7(1), 2791 – 2797
Ramanathan, S., and Amsath, A. (2018). Seasonal Variations In Physico-Chemical Parameters of Puthukulam Pond, Pudukkottai, Tamilnadu. Research Journal of Life Sciences, Bioinformatics, Pharmaceuticals and Chemical Sciences. 4(6) 656-662
Riordan, J. O. (1993). Ambient Water Quality Objectives for Yakoun and its Tributries, Water Quality Branch, Water Management Division, Ministry of Environment, Land and Parks, Overview Reports, Government of British Columbia, Canada.
Samir M. S. and Ibrahim M. S. (2008). Assessment Of Heavy Metals Pollution In Water and Sediments and Their Effect On Oreochromis niloticus In The Northern Delta Lakes, Egypt 8th International Symposium on Tilapia in Aquaculture 475-490
Samuel, O. B., Osibona, A. O., and Chukwu, L. O. (2015) Study Of Heavy Metals In The Gastropod, Pachymelaniaaurita (Muller, 1774), Sediment And Water From Ologe Lagoon, Southwestern Nigeria. Ife Journal of Science. 17 :(3), 565-577.
Santiago A. E. and Alicia M. V. (2013). Trophic Status of Shallow Lakes of La Pampa (Argentina) and Its Relation with the Land Use in the Basin and Nutrient Internal Load. Journal of Environmental Protection. 4 (11A), 51-60.
Smith, J. K., Johnson, L. M., and Davis, P. R. (2020). Sustainable Water Resource Management: Strategies for Environmental Preservation. Environmental Science Journal, 15(3), 45-58.
Søndergaard, M. Kristensen, P. and Jeppesen, E. (1992). Phosphorus release from resuspended sediment in the shallow and windexposed Lake Arreso, Denmark. Hydrobiologia 228:91-99.
State of Michigan, (SOM). Department of Environmental Quality. (2013). Total Suspended Solids.
U.S. Environmental Protection Agency. (2018, November 30). Dairy Products Processing Effluent Guidelines.
van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P. and Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change. 23(2): 450 – 464.
Wakil, M. (2015). Some Aspects of Limnology and Fisheries of Lake Alau, Maiduguri, Borno State. M.Tech. Thesis, Modibbo Adama University of Technology, Yola. 79 page.
Welch, E.B. (1980). Ecological effects of waste water. Cambridge, Cambridge University Press, 337 p.
WHO. (2007). Nitrate and nitrite in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality.
Wierzbicka, E. (2020). Novel methods of nitrate and nitrite determination – a review. Journal of Elementology 25(1): 97-106. DOI: 10.5601/jelem.2019.24.3.1848
Wongso Diharjo, D. F. M., Jannie, Retno Permatasari, W. S., and Wikaningrum, T., (2022). Comparison of Coagulant Dose (Poly Aluminum Chloride) Use in The Water Treatments
World Health Organisation (WHO 2011a). Guidelines for Drinking-water Quality, 4th Ed. World Health.
Wu, Z. Liu, Y. Liang, Z. Wu, S. and Guo, H. (2017). “Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: a dynamic model with temporal Bayesian hierarchical inference,” Water Research, 116, 231–240.
Yahyapour, S., Golshan, A., and Ghazali, A. H. (2013). “Removal of total suspended solids and turbidity within experimental vegetated channel: Optimization through Response Surface Methodology,” Journal of Hydro-Environment Research, vol. 8, no. 1.
Yakubu, O. A., Idowu, R.T. and Ali, F. A. (2018). Macroinvetebrate Assemblages In Relation To Water Quality in River Ngadda, North-Eastern Nigeria. International Journal of Research. 5:(21). 399-415
Yang, L. Chang, H. T. and Huang, M. N. L. (2001). Nutrient removal in gravel and soil based wetland microorganisms with and without vegetation. Ecological Engineering, 18: 91-105.
Yustiani, Y. M. Wahyuni, S. and Ringga Alfian, M. (2018). Investigation on The Deoxygenation Rate of Water of Cimanuk River, Indramayu, Indonesia. Rasayan Journal of Chemistry, 11(2), 475 – 481.
Zhang, H., Wang, H., Yang, K. Sun, Y. Tian, J. and Bin Lv. (2015). Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe(II) as electron donor. Annals of Microbiology. 65, 1069–1078.
Zhang, Y., Xia, J., Shao, Q., and Zhai, X. (2013). Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research and Risk Assessment. 27, 11–27.
Zhou, S., Sun, Y., Li, Z., and Huang, T. (2020). Characteristics and Driving Factors of the Aerobic Denitrifying Microbial Community in Baiyangdian Lake, Xiong’an New Area. Journal of Microorganisms, 8, 714
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences