CARBON QUANTUM DOTS FOR WASTEWATER TREATMENT: PRESENT PROGRESS AND FUTURE PROSPECTS

  • U. Victor Agbogo Nigerian Army University, Biu
  • Belief S. Rifore Nigerian Defense Academy, Kaduna
  • Chinaecherem Tochukwu Arum Nigerian Defense Academy, Kaduna
  • Precious D. Iorver Nigerian Defense Academy, Kaduna
  • Joshua Mathew Nigerian Defense Academy, Kaduna
  • Salome A. Tanko Nigerian Defense Academy, Kaduna
Keywords: Carbon Quantum Dots, Adsorption, Fluorescence, Wastewater, Nanomaterials

Abstract

Wastewater has continued to pose environmental pollution as various industrial and domestic processes effluents are released daily. As man’s activities increase daily, the possibility of facing water scarcity is imminent, coupled with the climate impacts of wastewater on aquatic lives, soil microorganisms, and agricultural produce. Therefore, several innovative developments have considered using carbon-based nanomaterials like carbon quantum dots (CQDs) to treat and recycle wastewater before they are discharged. These CQDs, just like activated carbon, possess adsorptive abilities that can remove heavy metals, solid pollutants, and foul odors from wastewater. However, they are more unique and effective than the traditional adsorbents because they display quantum effects, fluorescence, high stability, tough compatibility, water solubility, little toxicity, easy to produce, and affordable. This review discusses the nature of CQDs, their chemistries, adsorption abilities, limitations, and recommendations for future application and innovation for economical uses.

References

Agarwal S, Sadeghi N, Tyagi I, Gupta VK, Fakhri A. (2016). Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J Colloid Interface Sci. Sep 15;478:430-8. https://doi:10.1016/j.jcis.2016.06.029 DOI: https://doi.org/10.1016/j.jcis.2016.06.029

Bomben, K.D.; Moulder, J.F.; Stickle, W.F.; Sobol, P.E. (1995). Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS, Physical Electronics, Eden Prairie; Perkin-Elmer Corporation: Waltham, MA, USA.

Chae, A.Y.; Choi, S.J.; Paoprasert, N.P.; Park, S.Y.; In, I. (2017). Microwave-assisted synthesis of fuorescent carbon quantum dots from an A2/B3 monomer set. RSC Adv. 7, 12663–12669. DOI: https://doi.org/10.1039/C6RA28176A

Chaudhry SA, Khan TA, Ali I (2016). Adsorptive removal of Pb ( II ) and Zn ( II ) from water onto manganese oxide-coated sand : Isotherm , thermodynamic and kinetic studies. Egyptian Journal of Basic and Applied Sciences, Volume 3, Issue 3, Pg 287-300 https://doi:10.1016/j.ejbas.2016.06.002 DOI: https://doi.org/10.1016/j.ejbas.2016.06.002

Copur F, Bekar N, Zor E, Alpaydin S, Bingol H (2019). Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots. Sensors Actuators B C. Sci Rep. 25;12(1):17861. https://doi:10.1038/s41598-022-22837-2. DOI: https://doi.org/10.1016/j.snb.2018.10.026

Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M. (2019). Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning. Sci. Rep., 9, 14004. DOI: https://doi.org/10.1038/s41598-019-50397-5

Das R, Bandyopadhyay R, Pramanik P. (2018). Carbon quantum dots from natural resource: A review. Mater Today Chem 8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003. DOI: https://doi.org/10.1016/j.mtchem.2018.03.003

Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. (2012). Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon N Y 50:4738–43. https://doi./10.1016/j.carbon.2012.06.002 DOI: https://doi.org/10.1016/j.carbon.2012.06.002

Dou J, Gan D, Huang Q, Liu M, Chen J, Deng F, Zhu X, Wen Y, Zhang X, Wei Y (2019). Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int J Biol Macromol. 2019 Sep 1;136:476-485. https://doi:10.1016/j.ijbiomac.2019.06.112. DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.112

El-Brolsy, H.M.E.M.; Hanafy, N.A.N.; El-Kemary, M.A.(2022). Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int. J. Mol. Sci. 2022, 23, 13283. DOI: https://doi.org/10.3390/ijms232113283

Gayen, B.; Palchoudhury, S.; Chowdhury, J. (2019). Carbon Dots: A Mystic Star in the World of Nanoscience. J. Nanomater, 1–19. DOI: https://doi.org/10.1155/2019/3451307

Gyulai G, Ouanzi F, Bertóti I, Mohai M, Kolonits T, Horváti K, et al. (2019). Chemical structure and in vitro cellular uptake of luminescent carbon quantum dots prepared by solvothermal and microwave assisted techniques. J Colloid Interface Sci 549: 150–61. https://doi.org/10.1016/j.jcis.2019.04.058 DOI: https://doi.org/10.1016/j.jcis.2019.04.058

Haitao, L.; Kang, Z.; Liu, Y.; Lee, S.-T. (2012). Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem., 46, 24230–24253. DOI: https://doi.org/10.1039/c2jm34690g

Hanafiah, M. M. et al. (2018). Removal of chromium from aqueous solutions using a palm kernel shell adsorbent. Desalin. 118: 172-180 DOI: https://doi.org/10.5004/dwt.2018.22639

Hasan, F.F.C, Mohd Zahidi, N.A.W., Bahar, V.S., Remli, U.R.R.P., Abd Aziz, A., (2022). Carbon Quantum Dots (CQDs) Based Composites Photocatalyst for Wastewater Purification. In Materials Science Forum, Vol. 1056, pp. 111–117. Trans Tech Publications, Ltd. https://doi./10.4028/pftn9wh DOI: https://doi.org/10.4028/p-ftn9wh

Henriquez, G.; Ahlawat, J.; Fairman, R.; Narayan, M. (2022) Citric Acid-Derived Carbon Quantum Dots Attenuate Paraquat-Induced Neuronal Compromise In Vitro and In Vivo. ACS Chem. Neurosci. 13, 2399–2409. DOI: https://doi.org/10.1021/acschemneuro.2c00099

Published
2024-03-02
How to Cite
AgbogoU. V., Rifore B. S., Arum C. T., Iorver P. D., Mathew J., & Tanko S. A. (2024). CARBON QUANTUM DOTS FOR WASTEWATER TREATMENT: PRESENT PROGRESS AND FUTURE PROSPECTS. FUDMA JOURNAL OF SCIENCES, 8(1), 93 - 102. https://doi.org/10.33003/fjs-2024-0801-2208