STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF VANADIUM DOPED DELAFOSSITE CUGAO2: AN AB INITIO STUDY
Abstract
Delafossite copper gallium oxide (CuGaO2) is one of the most important copper-based delafossite materials reported. It has variety of applications that include but are not limited to; photo catalysis, dye-sensitized solar cells. However, due to the wide band gap of this material, it appears very attractive as transparent conductive oxide (TCO). Thus, it is very important and applicable in optoelectronic device technologies. In this paper, the structural, electronic and magnetic properties of vanadium (V) doped delafossite CuGaO2 are investigated using first principle study based on density functional theory (DFT) as implemented in the QUANTUM ESPRESSO simulation package. We used Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation scheme for the undoped and vanadium (V) doped structures. There is no structural transition after the doping. The results indicated that the V doping reduced the band gap of the undoped delafossite CuGaO2 by 0.8 eV. It also contributed more to the conduction band states. However, our results also revealed that the 50 % V doping induced significant changes to the magnetic properties of the undoped CuGaO2. It was found that the undoped CuGaO2 is slightly paramagnetic similar to the same group member CuAlO2, whereas the V doped CuGaO2 system is slightly ferromagnetic. This result is in agreement with previous literature concerning the effect of doping semiconductor material with magnetic metals. Thus, based on our results, V doped CuGaO2 material may be considered as an important candidate for spintronics and other related applications.
References
Alhassan, S. S., Shuaibu, A. and Onimisi M. Y. ( 2019). Structural and Electronic Properties of Delafossite CuGa1-xMnxO2(x=0.5) Nanocomposites: A First Principle Study. Physics Memoir-Journal of Theoretical and Applied Physics, 1(3), 106-112. http://jtap.physicsmemoir.com.ng/archive vol=1&issue=3&year=2019
Aqeel, M.A. and Ali, H. A. (2013). Doping, vacancy formation and substitutional effects of Semiconductor selection of rutile TiO2 crystal. Chemistry and material research, 3(2), 22-31. https://www.researchgate.net/publication/235742036_Doping_Vacancy_formation_and_Substitutional_Effects_on_Semiconductor_Selectivity_of_Rutile_TiO_2_Crystal
Badeker, K. (1907). Concerning the Electricity Conductivity and Thermoelectric Energy of Several Heavy Metal Bonds, Annalen der Physik, 327(4), 749-766. https://doi.org/10.1002/andp.19073270409 DOI: https://doi.org/10.1002/andp.19073270409
Banerjee, A. N. and Chattopadhyay, K. K. (2008). P-type Transparent Semiconducting Delafossite CuAlO2+x Thin Film: Promising Material for Optoelectronic Devices and Field Emission Displays. Materials Science Research Trends, United States: Nova Science Publishers 1-116. https://www.researchgate.net/publication/233796148
Chien, T. Y. and Ching, C. L. (2017). Improved electrical properties of P-type CuGaO2 semiconductor thin films through Mg and Zn doping. Ceramics International, 43(2), 2563-2567. https://doi.org/10.1016/j.ceramint.2016.11.059 DOI: https://doi.org/10.1016/j.ceramint.2016.11.059
David O. S., Kate,G. G., Benjamin J. M. and Graeme W. W. (2010). Understanding Conductivity anomalies in CuI-based delafossite transparent conducting oxides:Theoretical Insights. Journal of Chemical Physics, 132, 024707. https://doi.org/10.1063/1.3290815 DOI: https://doi.org/10.1063/1.3290815
David, O. S., Aron, W., and Graeme, W. W. (2009). Understanding the p-type conduction properties of the transparent conducting oxide CuBO2: A density functional theory analysis. Chemistry of Materials, 21, 4568-4576. https://doi.org/10.1021/cm9015113 DOI: https://doi.org/10.1021/cm9015113
Dorian, A. H., Mohammed, H. N., Sean, L., Aibing, Y. and Charles, C. S. (2012). Ab Initio study of phase stability in doped TiO2. Computational mechanics, 50(2), 185-194. https://doi.org/10.1007/s00466-012-0728-4 DOI: https://doi.org/10.1007/s00466-012-0728-4
Fazzio, A., Baierle, R. J., Fagan, S. B., Mota, R. and Antonio, J. R. (2001). Ab Initio study of Si doped Carbon nanotubes: Electronic and structural properties. Materials research society symposium proceedings, 675. https://doi.org/10.1557/PROC-675-W8.4.1 DOI: https://doi.org/10.1557/PROC-675-W8.4.1
Isaac H-C., Franscisco,F. S., Adele R., Beatriz J.-L., Fabrice O.,Laurent C., S. Jobic and Sixto, G. (2013). Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: The effect of Mg doping. Electrochimica Acta, 113, 570-574. https://doi.org/10.1016/j.electacta.2013.09.129 DOI: https://doi.org/10.1016/j.electacta.2013.09.129
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K. A. (2013). The material project: A materials genome approach to accelerating materials innovation. APL materials, 1(1), 011002. https://doi.org/10.1063/1.4812323 DOI: https://doi.org/10.1063/1.4812323
Jean-Pierre, D., Aree, W., Abdelaziz, A., Michel, P. and Paul, H. (1986). On magnetic properties of some oxides with delafossite-type structure. Material Research Bulletin, 21(6), 745-752. https://doi.org/10.1016/0025-5408(86)90155-8 DOI: https://doi.org/10.1016/0025-5408(86)90155-8
Jonathan W. L, M. K. Underwood, James, P. L., Christopher, M., (2012). Synthesis, characterization, electronic structure and photocatalytic behaviour of CuGaO2 and CuGa1-xFex (x=0.05,0.10,0.15,0.20) delafossites. Journal of Physical Chemistry C, 116, 1865-1872. https://doi.org/10.1021/jp2087225 DOI: https://doi.org/10.1021/jp2087225
Kawazoe H.,Yasukawa M.,Hyodo H.,Kurita M.,Yanagi H.,Hosono H., (1997). P-ype electrical conduction in transparent thin films of CuAlO2. Nature(London), 389, 939-942. https://doi.org/10.1038/40087 DOI: https://doi.org/10.1038/40087
Mahmud, A. and Daniel, P.J. (2014). Structural and electronic properties of iron doped technetium sulphide. Proceedings of SAIP2014, 558-563. https://www.researchgate.net/publication/280036278_Structural_and_electronic_properties_of_iron_doped_technetium_sulphide
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences