INVESTIGATION OF PHOTOVOLTAIC POTENTIALS OF A SILVER IMPLANTED DIAMOND-LIKE CARBON THIN FILM

  • I. G. Abdulsalam
  • A. K. Abubakar
  • M. Aliyu
  • S. R. Naidoo
  • A. Miller
Keywords: amorphous carbon, optical absorbance, surface plasmon resonance, fluence, efficiency

Abstract

This paper investigated the optical response of silver implanted carbon-based thin films (deposited on quartz substrates) due to varying fluence of energetic Ag ions in the range 2.5 - 3.4 x 1016 ions/cm2. Raman spectroscopy was used to observe the microstructural specifics of the Ag:a-C composites. Atomic force microscopy (AFM) revealed significant increase in particle grain size and surface roughness of the films at varying fluences. Optical absorption spectra showed that the Surface Plasmon Resonance (SPR) of pristine Ag occurs at visible wavelength of about 428 nm but exhibited a blue shifting (~ 32 nm) in the implanted films. The blue shift in plasmonic wavelength occurs due to the fluence-induced increase in grain size and density of the Ag particles as confirmed by AFM. Optical band gap energy () and Urbach parameter () of the pristine carbon film increased, with fluence, from 2.89 eV to 1.60 eV and 3.60 eV to 4.22 eV respectively. The observed optically active parameters strongly indicate that the composites would make good candidates for photon retention towards the enhancement of solar cells’ efficiency.

References

P. S. Karthik, A. L. Himaja, and S. P. Singh, “Carbon-allotropes: synthesis methods, applications and future perspectives,” Carbon Lett., vol. 15, no. 4, pp. 219–237, 2014. DOI: https://doi.org/10.5714/CL.2014.15.4.219

H. Kroto, “Space, Stars, C60, and Soot,” Science (80-.)., vol. 242, no. 4882, pp. 1139–1145, 1986. DOI: https://doi.org/10.1126/science.242.4882.1139

L. Dai, D. W. Chang, J. B. Baek, and W. Lu, “Carbon nanomaterials for advanced energy conversion and storage,” Small, vol. 8, no. 8, pp. 1130–66, 2012. DOI: https://doi.org/10.1002/smll.201101594

P. Kumar and A. Kumar, “Carrier type modulation in current annealed graphene layers,” Appl. Phys. Lett., vol. 104, no. 8, 2014. DOI: https://doi.org/10.1063/1.4867019

R. Singhal, J. C. Pivin, R. Chandra, and D. K. Avasthi, “Ion irradiation studies of silver/amorphous carbon nanocomposite thin film,” Surf. Coatings Technol., vol. 229, pp. 50–54, 2013. DOI: https://doi.org/10.1016/j.surfcoat.2012.05.131

A. L. Stepanov, “Synthesis of silver nanoparticles in dielectric matrix by ion implantation: A review,” Rev. Adv. Mater. Sci., vol. 26, no. 1–2, pp. 1–29, 2010.

L. H. Zhou et al., “Formation of Au nanoparticles in sapphire by using Ar ion implantation and thermal annealing,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 267, no. 1, pp. 58–62, 2009. DOI: https://doi.org/10.1016/j.nimb.2008.10.084

H. W. Choi, R. H. Dauskardt, S. C. Lee, K. R. Lee, and K. H. Oh, “Characteristic of silver doped DLC films on surface properties and protein adsorption,” Diam. Relat. Mater. vol. 17, no. 3, pp. 252–257, 2008. DOI: https://doi.org/10.1016/j.diamond.2007.12.034

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, no. 15, pp. 1341–1349, 2012. DOI: https://doi.org/10.1016/j.ssc.2012.04.064

N. Laidani, R. Bartali, G. Gottardi, M. Anderle, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi – Bloomer and Tauc – Lorentz models : a comparative study,” J. Phys. Condens. Matter, IOP Publ., vol. 20, no. 1, p. 015216,1-015216,8., 2009. DOI: https://doi.org/10.1088/0953-8984/20/01/015216

L. Mahmudin, E. Suharyadi, A. Bambang, S. Utomo, and K. Abraha, “Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance ( SPR ) -Based Biosensor Applications,” no. July, pp. 1071–1076, 2015. DOI: https://doi.org/10.4236/jmp.2015.68111

S. L. Candelaria et al., “Nanostructured carbon for energy storage and conversion,” Nano Energy, vol. 1, no. 2, pp. 195–220, 2012. DOI: https://doi.org/10.1016/j.nanoen.2011.11.006

F. L. Freire, C. A. Achete, and G. Mariotto, “Nitrogen implantation into amorphous carbon films: XPS, AES and Raman analyses,” Nucl. Inst. Methods Phys. Res. B, vol. 99, no. 1–4, pp. 606–609, 1995. DOI: https://doi.org/10.1016/0168-583X(94)00551-6

F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys., vol. 153, no. 3, pp. 1126–1130, 1970. DOI: https://doi.org/10.1063/1.1674108

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nano-diamond,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, no. 1824, pp. 2477–2512, 2004. DOI: https://doi.org/10.1098/rsta.2004.1452

D. Zhang, P. Yi, L. Peng, X. Lai, and J. Pu, “Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells,” Carbon N. Y., vol. 145, pp. 333–344, 2019. DOI: https://doi.org/10.1016/j.carbon.2019.01.050

N. R. C. Raju, K. J. Kumar, and A. Subrahmanyam, “Silver oxide (AgO) thin films for Surface Enhanced Raman Scattering (SERS) studies,” AIP Conf. Proc., vol. 1267, pp. 1005–1006, 2010. DOI: https://doi.org/10.1063/1.3482261

H. M. Lu and Q. Jiang, “Size-Dependent Surface Energies of Nanocrystals,” J. Phys. Chem. B, vol. 108, no. 18, pp. 5617–5619, 2004. DOI: https://doi.org/10.1021/jp0366264

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coatings Technol., vol. 202, no. 22–23, pp. 5339–5342, 2008. DOI: https://doi.org/10.1016/j.surfcoat.2008.06.080

C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J.Phys. Chem. C, vol. 111, no. 10, pp. 3606–3619, 2007. DOI: https://doi.org/10.1021/jp066539m

Published
2024-01-31
How to Cite
Abdulsalam I. G., Abubakar A. K., Aliyu M., Naidoo S. R., & Miller A. (2024). INVESTIGATION OF PHOTOVOLTAIC POTENTIALS OF A SILVER IMPLANTED DIAMOND-LIKE CARBON THIN FILM. FUDMA JOURNAL OF SCIENCES, 7(6), 298 - 303. https://doi.org/10.33003/fjs-2023-0706-2193