MATHEMATICAL ANALYSIS OF COVID-19 INFECTION MODEL WITH DEMOGRAPHIC DYNAMICS

  • Rose Uwanassara Danjuma
  • Patrick Noah Okolo
  • Muhammad Kabir Dauda
Keywords: COVID-19, Positivity of Solution, Equilibrium Points, Basic Reproduction Number, Stability

Abstract

This study developed a deterministic mathematical model of COVID-19 infection by incorporating asymptomatically and symptomatically infectious individuals, the vital dynamics such as birth rate and mortality rate. Face mask use, diagnosis of asymptomatic infectious individuals, and isolation of infected individuals as control strategies are also incorporated. The model is shown to have two unique equilibrium states, namely: the disease-free equilibrium points and the endemic equilibrium point. The result from the stability analysis of the critical points is shown to be local asymptotic stable and also, globally asymptotically stable provided the basic reproduction number is less than one (, and the endemic equilibrium state is local asymptotic stable and also, globally asymptotically stable provided . Furthermore, results of the sensitivity index on   for the different parameters of the model show that the recruitment rate and the effective contact rate are the most sensitive parameters and thus critical in disease management and eradication. Thus, efforts geared at reducing the recruitment of susceptible individuals and infection transmission rate will significantly eliminate the disease burden.

References

Andrea, L.B., Elisa, F., George, M., Martin, B.S., & Daniel, S. (2020). The challenges of modeling and forecasting the spread of COVID-19. PNAS 117(29), 16732-16738. www.pnas.org/cgi/doi/10.1073/pnas.2006520117. DOI: https://doi.org/10.1073/pnas.2006520117

Castillo-Chavez, C., Feng, Z. & Huang, W. (2002). On the Computation of R_0 and Its Role on Global Stability. In: Castillo-Chavez, P.C., Blower, S., Driessche, P., Kirschner, D. and Yakubu, A. A., Eds., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer, Berlin, 229. https://doi.org/10.1007/978-1-4757-3667-0_13 . DOI: https://doi.org/10.1007/978-1-4757-3667-0

Centers for Disease Control and Prevention (CDC) (2022). COVID-19: How it spreads, Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/your-health/how-covid-spreads.html

Centre for Disease Control (2021). Coronavirus (COVID-19). https://www.cdc.gov/coronavirus/about/index.html

Chitnis, N., Hyman, J., & Cushing, J. (2008). Determining Important Parameters in the Spread of Malaria through the Sensitivity Analysis of a Mathematical Model, 7(50). https://pubmed.ncbi.nlm.nih.gov/18293044/

Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365–382. DOI: https://doi.org/10.1007/BF00178324

Ghassane, b., Khalil, N., & Jamal, B. (2020). Modelling and simulating the novel coronavirus with implications of asymptomatic carriers. International Journal of Differential Equations, (1), 1-9. https://doi.org/10.1155/2020/5487147. DOI: https://doi.org/10.1155/2020/5487147

Gnanvi, J.E., Salako, K.V., Kotanmi, G.B., & Kakai, R.G. (2021). On the reliability of predictions on covid-19 dynamics: A systemic and critical review of modelling techniques. Infectious Disease Modelling, 6, 258-272. https://doi.org/10.1016/j.idm.2020.12.008. DOI: https://doi.org/10.1016/j.idm.2020.12.008

Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., ... & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708-1720. DOI: https://doi.org/10.1056/NEJMoa2002032

Indwiana, A., & Ysrafil, Y. (2020). Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-COV-2): An Overview of Viral Structure and Host Response,14(4), 407 – 412. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165108/ DOI: https://doi.org/10.1016/j.dsx.2020.04.020

Kumar, P., Erturk, V., & Marina, M. (2021). A new fractional mathematical modelling of COVID-19 with the availability of vaccine. https://www.sciencedirect.com/science/article/pii/S2211379721003582 DOI: https://doi.org/10.1016/j.rinp.2021.104213

Lakshmikantham, V., Leela, S. & Martynyuk, A. A. (1989). Stability Analysis of Nonlinear Systems. New York: Marcel Dekker Inc. DOI: https://doi.org/10.1142/1192

Liu, T., Hu, J. X., Kang, M., Lin, L., Zhong, H., Xiao, J., et al. (2020). Transmission dynamics of 2019 novel coronavirus (2019-nCOV), https//doi.org/10.1101/2020.01.25.919787 DOI: https://doi.org/10.2139/ssrn.3526307

Masaki, T., & Mitsuo, K. (2020). A mathematical model for COVID-19 pandemic-SIIR model: Effects of asymptomatic individuals. Journal of General and Family Medicine, 22, 5-14. https:doi.org.10.1002/jgf2.382. DOI: https://doi.org/10.1002/jgf2.382

Mehmet, Y., Fatma, O., Fatma, G., & Feyza, N. (2021). A New Mathematical Modeling of the COVID-19 Pandemic including the Vaccination Campaign. Open Journal of Modeling and Simulation, 9(3). doi: 10.4236/ojmsi.2021.93020. DOI: https://doi.org/10.4236/ojmsi.2021.93020

Okolo, P. N. & Onoja, A. (2021). Modelling COVID-19 Epidemics: The Role of Social Distancing and Isolation. Covenant Journal of Physical & Life Sciences, 9(1), 1-15.

Okolo, P. N., Odebode, A. G., & Dauda, M. K. (2021). A Mathematical model of COVID-19 infection transmission dynamics. KASU Journal of Mathematical Sciences (KJMS), 2(2), 57-73.

Routh-Hurwitz, A. (1964). On The Conditions Under Which an Equation Has Only Roots with Negative Real Parts. In Bellman, Richard; Kalaba, Robert E. (eds.). Selected Papers on Mathematical Trends in Control Theory. New York: Dover.

Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29–48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6

Veera, K.M. & Prakash, J. (2020). Mathematical modeling on phase-based transmissibility of coronavirus. Infectious Disease Modelling, 5, 375-385. https://doi.org/10.1016/j.idm.2020.06.005. DOI: https://doi.org/10.1016/j.idm.2020.06.005

Vince M. (2020). COVID-19: A History of Coronavirus. Lab Health and Safety. https://www.google.com/amp/s/www.labmanager.com/lab-health-and-safety/covid-19-a history-of-coronavirus-22021/amp

World Health Organization (2021). Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answer hub/q-a-detail/coronavirus-disease-covid-19#::text=symptoms

Zeb, A., Alzahrani, E., Erturk, V.S., & Zaman, G. (2020). Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. BioMed Research International, 1-7. https://doi.org/10.1155/2020/3452402. DOI: https://doi.org/10.1155/2020/3452402

Zhang, N., Li, Y., Huang, H., Ding, Y., Zhou, X., & Ji, Z. (2021). Airborne transmission of SARS CoV-2: The world should face reality. Journal of Hospital Infection, 111, 77-83. https://doi:10.1016/j.jhin.2021.05.001 DOI: https://doi.org/10.1016/j.jhin.2021.05.001

Published
2024-01-30
How to Cite
Danjuma R. U., Okolo P. N., & Dauda M. K. (2024). MATHEMATICAL ANALYSIS OF COVID-19 INFECTION MODEL WITH DEMOGRAPHIC DYNAMICS. FUDMA JOURNAL OF SCIENCES, 7(6), 92 - 103. https://doi.org/10.33003/fjs-2023-0706-2176