• S. B. Adamu
  • Gudzan Sow Department of Zoology, Ahmadu Bello University
  • I. S. Ndams
Keywords: Calotropis procera, Culex quinquefasciatus, Generations, Lethal Concentration, Resistance ratio


Mosquitoes constitute a serious Public Health menace, resulting in millions of death worldwide each year. Emergence of insecticide resistant strains of the mosquitoes poses a serious threat and hence calls for alternative control measures. This study assessed the larvicidal efficacy of the methanolic leaf extract of Calotropis procera against the 3rd instar larvae of Culex quinquefasciatus, after ten generations for 24 hours of exposure. Larvicidal activities of the leaf of the plant were studied on laboratory reared larvae of Culex quinquefasciatus at concentration ranges of 15 mg/L to 19 mg/L. The LC50 values were obtained from Probit analysis at 95% confidence limit (CL). Results of the study indicated that the LC50 values obtained from the parent generation (F0) to the tenth generation (F10) were; 15.79 mg/L, 16.58 mg/L, 17.29 mg/L, 18.07 mg/L, 18.95 mg/L, 19.99 mg/L, 20.65 mg/L, 21.18 mg/L, 22.80 mg/L, 25.16 mg/L and 32.98 mg/L respectively at 24hours. A higher efficacy of activity was exhibited by the extract at the parent generation (F0) with lowest LC50 of 15.97 mg/L at 24h.  The results of this research therefore underscore the efficacy of the plant and further suggest the use of the leaf extracts of Calotropis procera in the control of mosquito vectors and indirectly to the diseases they vectored.


Andreadis, T. G., Armstrong, P. M. and Bajwa, W. I. (2010): Studies on hibernating populations of Culex pipiens from a West Nile virus endemic focus in New York City: Parity rates and isolation of West Nile virus Journal of the American Mosquito Control Association, 26:257-264.

Anjum, S.I., Hussain, S., Attaullah, M., Khan, H.U., Khattak, B. and Fouad, H. (2016). Evaluation of the larvicidal potential of Calotropis procera plant extract against Culex pipiens. International Journal of Mosquito Research, 3(6): 01-05

Brown, A.W. and Pal, R. (1971). Insecticide resistance in arthropods. Public Health Paper, 38:1 491.

Chareonviriyaphap, T., Bangs, M.J., Suwonkerd, W., Kongmee, M., Corbel, V., Ngoen-Klan, R., (2013). Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites Vectors, 6: 280.

Choochote W, Tueton B, Kanjanapothi D, Rattanachanpichoi E, Chaithong U, Chainong P, Jitpakdi A, Tippawangkosol P, Rivong D, Pitasawat B (2004). Potential of crude seed extract of celery, Apium graveolus L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae). Journal of Vector Ecology, 29(2): 340-6.

David, M. R., Ribeiro, G. S. and de Freitas, R. M. (2012). Bionomics of Culex quinquefasciatus within urban areas of Rio de Janeiro, Southeastern Brazil.Revista Saúde Pública, 46(5): S0034-89102012000500013.

Diaz-Badillo, A., Bolling, B. G., Perez-Ramirez, G., Moore, C. G., Martinez-Munoz, J. P., Padilla-Viveros, A. A., Camacho-Nuez, M., Diaz-Perez, A., Beauty, B. J. and de Lourdes, M. M. (2011). The distribution of potential West Nile virus vectors, Culex pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City. Parasites & Vectors, 4:70.

Elimam, A.M., Elmalik, K.H. and Ali, F.S. (2009). Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi Journal of Biological Sciences, 16: 95– 100

El-sheik, E.A., Ashour, M.A., Aamir, M.M. and Gamal, M.M. (2014). Monitoring the effect of insecticide selection on Culex pipiens (Diptera: Culicidae) larval susceptibility to malathion and lambda-cyhalothrin. Journal of Entomology, 11(1): 14-24.

Finney, D.J. (1971). Probit Analysis. Cambridge: Cambridge University Press.

Govindarajan, A., Kelleher, R. J., Tonegawa, S. (2008). A clustered Plasticity Model of Long-term Memory Engrams. Nature Reviews Neuroscience, 7: 575–583.

Govindarajan, M. and Rajeswary, M. (2014). Mosquito larvicidal properties of Imatiens balsamania (Balsamaniaceae) against Anopheles stephensi Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Journal of Coastal Life medicine, 2(3): 222-224.

Hemingway, J. and Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annual Review of Entomology. 45, 371–391.

Jitpakdi, A., Choochote, W., Panart, P., Tookyang, B., Panart, K., Prajakwong, S. (1998). Possible transmission of two types of Wuchereria bancrofti in Muang District, Chiang Mai, northern India.

Kumar, G., Karthik, L., Rao, K.V.B., Kirthi, A.V., JayaseelanC. and AbdulRahuman, A. (2012). Phytochemical composition, mosquito larvicidal, ovicidal and repellent activity of Calotropis procera against Culex tritaeniorhynchus and Culex gelidus. Bangladesh Journal of Pharmacology, 7: 63-69.

Malcolm, C. A. (1988) Current status of pyrethroids resistance in (Diptera: Culicidae). Parasitology Today, 4: S13-S15.

Mazarri, M. B. and Georghiou, G. P. (1995) Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of (Aedes aegypti). Journal of the American Mosquito Control Association, 11(3): 315-22.

Morin, C. W. and Comrie, A. C. (2010). Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model. International Journal of Biometeorology, 54(5):517-29.

Paeporn, P., Ya-umphan, P., Supaphathom, K., Savanpanyalert, P., Wattanachai, P. and Patimaprakorn, R. (2004). Insecticide Susceptibility and Selection for Resistance in a Population of Aedes Aegypti From Ratchaburi Province, Thailand. Tropical Biomedicine, 21(2): 1-6

Patel, H. V., Patel, J. D. and Patel, B. (2014), Comparative efficacy of phytochemical analysis and antioxidant activity of methanolic extract of Calotropis gigantea and Calotropis procera. International Journal of Life Science Biotechnology Pharmacology Research, 5(2):107-13.

Pumidonming, W., Polseela, P., Maleewong, W., Pipitgool, V., Poodendaen, C. (2005). Culex quinquefasciatus in Phitsanulok as a possible vector of nocturnally periodic Wuchereria bancrofti transmission in Myanmar immigrants. Southeast Asian Journal of Tropical Medicine and Public Health 36 (Suppl. 4), 176–179.

Raymond, M. (1985) Log – probit analysis basic programme of microcomputer. Cohiers ORTOM Series. Entomology Medicale et parasitology, 23;117-121.

Rios-Ibarra, C., Blitvich. B., Farfan-Ale, J., Ramos-Jimenez, J., Muro-Escobedo, S., Martínez Rodriguez, H., OrtizLópez, R., Torres-López, E. and Rivas-Estilla, A. (2010): Fatal human case of West Nile disease, Mexico, 2009.Emerging Infectious Diseases, 16:741-742.

Rivero, A., Vezilier, J., Weill, M., Read, A.F., Gandon, S. (2010). Insecticide control of vector- borne diseases: when is insecticide resistance a problem? Plos Pathogens, 6(8):

Saleh, M.S., El‐Meniawi, F.A., Kelada, N.L. and Zahran, H.M. (2003). Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis. Journal of Applied Entomology, 127(1): 29-32

Sarkar, M., Bhattacharyya, I.K., Borkotoki, A., Baruah, I. and Srivastava, R.B. (2009). Development of physiological resistance and its stage specificity in Culex quinquefasciatus after selection with deltamethrin in Assam, India. Memórias do Instituto Oswaldo Cruz, 104(5): 673-677.

Sarwar, M., Ahmad, N. and Toufiq, M. (2009). Host plant resistance relationshiphs in chickpea (Cicer arietinum Linn.) against gram pod borer (Helicoverpa armigera Hubner). Pakistan Journal of Botany, 41(6): 3047-3052.

Shaalan, E. A. S., Canyon, D., Younesc, M. W. F., Abdel-Wahab, H. and Mansoura, A. H. A. (2005). Review of botanical phytochemicals with mosquitocidal potential. Environment International, 31: 1149–66.

Shahia, M., Hanafi-Bojdb, A. A., Iranshahic, M., Vatandoostb, H. and Hanafi-Bojdd, M. Y. (2010). Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). Journal of Vector Borne Diseases; 47:185-8.

Singh, R.K. Mittal, P.K. and Dhiman, R.C. (2005). Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. Journal of Communicable Diseases, 37 (2): 109•113

Triteeraprapab, S., Kanjanopas, K., Suwannadabba, S., Sangprakarn, S., Poovorawan,Y., Scott, A.L. (2000). Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiology and Infection, 125, 207–212.

Verma DR, Kakkar A, Bais N, Dubey P. (2011) Antifungal Activity of Calotropis Procera Journal of Global Pharmacy Technology;3(9):11-4.
WHO (1992). Vector resistance to pesticides. 15th report of the expert committee on vector biology and control. Technical Report Series. p.818.

WHO (2005). Guidelines for Laboratory and Field Testing of Mosquito Larvicides. WHO communicable disease control, prevention and eradication. WHO pesticide evaluation scheme. WHO/CDS/WHOPES/GCDPP/2005.13.

WHO (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations.

World Health Organization (1995). Vector Control for Malaria and other mosquito borne diseases. WHO Technical Report 857, World Health Organization, Geneva Switzerland.

World Health Organization (2002). WHO Traditional medicine strategy 2002-2005. Geneva. 2002. WHO/EDM/TRM/2002.1.

Zibaee, A., and Bandani, A. R. (2010). Effects of Artemisia annua L. (Asteracea) on digestive enzymes profiles and cellular immune reactions of sunnpest, Eurygaster integriceps Heteroptera: Scutellaridae), against Beauvaria bassiana. Bulletin of Entomological Research, 100: 185–196.
How to Cite