EXPLORING THE SUITABILITY OF FRUIT AND VEGETABLE WASTES FOR BIOMETHANE AND ELECTRICITY GENERATION

  • A. A. Salim
  • M. Isma’il
  • S. M. Zubairu
  • A. Ahmed
  • A. W. Hassan
  • B. I. Ityonum
  • F. Dayyabu
Keywords: Anaerobic Digestion, Biomethane, Fruit, Vegetable wastes

Abstract

The exploration of sustainable energy sources, such as biomethane, has become essential due to the increasing global population and demand for food and energy. This study aims to investigate the potential production of biomethane and electricity generation from fruit and vegetable waste. The fruit and vegetable waste used in this research was collected from student hostels at the College of Nursing and Midwifery, Sahaf Restaurant, Mima Restaurant, Mama Ojo Restaurant, Dan Sadi Restaurant, and IBC Restaurant in Malumfashi. The research involves laboratory analysis of the fruit and vegetable waste samples, focusing on their nutrient composition, biomethane potential, and electrical potential. Proximate analysis was used to determine the nutrient characterization, while the Baserga model was used to predict the biomethane potential. Proximate analysis revealed a total solid content of 95.92%, a volatile solid content of 86.5%, a crude protein content of 0.14%, a nitrogen-free extract of 76.96%, a crude fiber of 6.1%, and a crude fat of 3.3%. According to the Baserga model, a significant biomethane yield of 864.4 L/kg volatile solids, with a methane content of 57%, can be expected. The findings also indicate that complete degradation of fresh organic matter from fruit and vegetable waste can generate 748m3/ton of gas. Furthermore, the study predicts an electricity potential of 1601 kWh/ton of fresh fruit and vegetable waste. Based on these findings, the study recommends the use of fruit and vegetable waste as biomass for energy production to address landfilling issues and promote a more sustainable waste management approach.

References

Alengebawy, A., Ran, Y., Ghimire, N., et al. (2023). Rice straw for energy and value-added products in China: A review. Environmental Chemistry Letters, 21, 2729–2760. https://doi.org/10.1007/s10311-023-01612-3 DOI: https://doi.org/10.1007/s10311-023-01612-3

AOAC (Association of Official Analytical Chemists) (2005) Official Methods of Analysis of the Association of Analytical Chemists. 18th edition. Gaithersburg, MD: AOAC.

Baserga, U. (1998). Landwirtschaftliche co-vergärungs- biogasanlagen: Biogas aus organischen reststoffen und ener- giegras.

Charles, A. O., & Oluwatosin, O. O. (2022). Biogas production using poultry wastes, yam and plantain peels. GSC Biological and Pharmaceutical Sciences, 19(1), 288–296. https://doi.org/10.30574/gscbps.2022.19.1.0153 DOI: https://doi.org/10.30574/gscbps.2022.19.1.0153

Dave, J. M., Taberes, E., & Ishdorj, A. (2022). A Systematic Review and Meta-Analysis of Fruit and Vegetable Waste From School Lunch. Current Developments in Nutrition. URL: https://api.semanticscholar.org/CorpusID:249686222 DOI: https://doi.org/10.1093/cdn/nzac054.011

FAO. (2020). Fruit and vegetables – your dietary essentials. The International Year of Fruits and Vegetables, 2021, background paper. Rome. https://doi.org/10.4060/cb2395en DOI: https://doi.org/10.4060/cb2395en

Feiz, R., Ammenberg, J., Björn, A., Guo, Y., Karlsson, M., Liu, Y., Liu, Y., Masuda, L. S. M., Enrich-Prast, A., Rohracher, H., Trygg, K., Yekta, S. S., & Zhang, F. (2019). Biogas potential for improved sustainability in Guangzhou, China-A study focusing on food waste on Xiaoguwei Island. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061556 DOI: https://doi.org/10.3390/su11061556

Herman, T., Nungesser, E., Miller, K. E., & Davis, S. C. (2022). Comparative Fuel Yield from Anaerobic Digestion of Emerging Waste in Food and Brewery Systems. Energies, 15, 1538. https://doi.org/10.3390/en15041538 DOI: https://doi.org/10.3390/en15041538

Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: A review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20200351. https://doi.org/10.1098/rspa.2020.0351 DOI: https://doi.org/10.1098/rspa.2020.0351

Khalid, S., Gulfraz, M., & Kabir, F. (2016). Comparison of Biomethane Production from Fruit and Vegetable Waste through Anaerobic Digestion. Imperial Journal of Interdisciplinary Research, 2, 73-78. URL: https://api.semanticscholar.org/CorpusID:217765506

Longjan, G. G., & Zahir, D. (2018). Nutrient characterisation and bioenergy potential of common Nigerian food wastes. Waste Management & Research, Vol. 36(5), 426 –435. https://doi.org/10.1177/0734242X18763527 DOI: https://doi.org/10.1177/0734242X18763527

Maile, I., Muzenda, E., & Mbohwa, C. (2016). Optimization of Biogas Production through Anaerobic Digestion of Fruit and Vegetable Waste: A Review. URL: https://api.semanticscholar.org/CorpusID:27571531

Matobole, K., Seodigeng, T., & Rutto, H. (2021). Ultrasonic pre-treatment investigation on biogas production of biomethane of fruit and vegetable waste. Chemical Engineering Transactions, 86, 1471-1476.

Mekonnen Tura, A., & Seifu Lemma, T. (2019). Production and Evaluation of Biogas from Mixed s Collected from Arba Minch Market. American Journal of Applied Chemistry, 7(6), 185. https://doi.org/10.11648/j.ajac.20190706.16 DOI: https://doi.org/10.11648/j.ajac.20190706.16

Mohammed, A., Samaila, M. B., & Kabir, K. (2020). Comparative Biogas production by Anaerobic Digestion Using Sugarcane Bagasse, Cow Dung and Chicken Droppings Obtained from Katsina Metropolis as Substrates. UMYU Journal of Microbiology Research (UJMR), 4(2), 70–74. https://doi.org/10.47430/ujmr.1942.012 DOI: https://doi.org/10.47430/ujmr.1942.012

Noussan, M., Negro, V., Prussi, M., Chiaramonti, D. (2024). The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy. Applied Energy, 355, 122322. https://doi.org/10.1016/j.apenergy.2023.122322 DOI: https://doi.org/10.1016/j.apenergy.2023.122322

Nwokolo, N., Mukumba, P., Obileke, K., & Enebe, M. (2020). Waste to energy: A focus on the impact of substrate type in biogas production. Processes, 8(10), 1–21. https://doi.org/10.3390/pr8101224 DOI: https://doi.org/10.3390/pr8101224

Oliveira, J. V., Costa, J. C., Cavaleiro, A. J., Pereira, M. A., & Alves, M. M. (2022). Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies, 15(13), 4696 DOI: https://doi.org/10.3390/en15134696

Rincón-Catalán, N. I., Cruz-Salomón, A., Sebastian, P. J., Pérez-Fabiel, S., Hernández-Cruz, M. d. C., Sánchez-Albores, R. M., ... Ríos-Valdovinos, E. I., et al. (2022). Banana Waste-to-Energy Valorization by Microbial Fuel Cell Coupled with Anaerobic Digestion. Processes, 10(8), 1552. https://doi.org/10.3390/pr10081552 DOI: https://doi.org/10.3390/pr10081552

Rosenfeld, D. C., Lindorfer, J., & Ellersdorfer, M. (2020). Valorization of organic waste fractions: A theoretical study on biomethane production potential and the recovery of N and P in Austria. Energy, Sustainability and Society, 10, 1-11. URL: https://api.semanticscholar.org/CorpusID:227155234 DOI: https://doi.org/10.1186/s13705-020-00272-3

Sahoo, A., Dwivedi, A., Madheshiya, P., et al. (2023). Insights into the management of food waste in developing countries: with special reference to India. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-27901-6 DOI: https://doi.org/10.1007/s11356-023-27901-6

Suhartini, S., Lestari, Y. P., & Nurika, I. (2019). Estimation of methane and electricity potential from canteen food waste. IOP Conference Series: Earth and Environmental Science, 230(1), 0–6. https://doi.org/10.1088/1755-1315/230/1/012075 DOI: https://doi.org/10.1088/1755-1315/230/1/012075

Tagne, R. F. T., Dong, X., Anagho, S. G., Kaiser, S., & Ulgiati, S. (2021). Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-021-01272-9 DOI: https://doi.org/10.1007/s10668-021-01272-9

Tampio, E. A., Blasco, L., Vainio, M. M., Kahala, M. M., & Rasi, S. E. (2019). Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. GCB Bioenergy, 11(1), 72–84. https://doi.org/10.1111/gcbb.12556 DOI: https://doi.org/10.1111/gcbb.12556

Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods, 12, 1949. https://doi.org/10.3390/foods12101949 DOI: https://doi.org/10.3390/foods12101949

Published
2023-12-31
How to Cite
Salim A. A., Isma’il M., Zubairu S. M., Ahmed A., Hassan A. W., Ityonum B. I., & Dayyabu F. (2023). EXPLORING THE SUITABILITY OF FRUIT AND VEGETABLE WASTES FOR BIOMETHANE AND ELECTRICITY GENERATION. FUDMA JOURNAL OF SCIENCES, 7(6), 328 - 332. https://doi.org/10.33003/fjs-2023-0706-2138

Most read articles by the same author(s)