A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT

Authors

  • Patrick Noah Okolo Kaduna state University
  • Christiana Gideon Makama
  • Roseline Toyin Abah

DOI:

https://doi.org/10.33003/fjs-2023-0706-2108

Keywords:

Tuberculosis, Basic reproduction number, local stability, global stability, sensitivity

Abstract

In this study, a mathematical model for Tuberculosis infection transmission dynamics is developed by incorporating testing and therapy of latent individuals, the isolation of infectious individuals and the treatment of the isolated individuals. The basic reproduction number was computed using the next generation matrix method. Analysis of the model at the disease-free equilibrium state and the endemic equilibrium states shows that it is locally and globally asymptomatically stable whenever the basic reproduction number is less than unity at the disease -free equilibrium state and locally and globally asymptotically stable whenever the basic reproduction number is greater than unity. The result from the sensitivity index of  show that the infection transmission parameter and other control parameters such as early detection and therapy, the isolation of infected individuals and treatment are crucial parameters to tuberculosis management.  It is shown from numerical simulations that the early detection and therapy, isolation and treatment of infected individuals will reduce the infection transmission. Further numerical results show that the combination of early detection and therapy, isolation and treatment of infectious individuals will decrease the infection transmission and its eventual eradication from the human population.

References

Aba Oud, M. A., Ali, A., Alrabaiah, H., Ullah, S., Khan, M. A., & Islam, S.(2021). A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Advances in Difference Equations, 2021(1): 1-19.

Adewole, M. O., Onifade, A. A., Abdullah, F. A., Kasali, F., & Ismail, A. I.(2021). Modelling the Dynamics of COVID-19 in Nigeria. International journal of applied and computational mathematics, 7(3):1-25.

Ahmed, H. A. O. (2011). Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infection (Doctoral dissertation, University of the Western Cape).

Akinyemi, S. T., Oyelowo, Yemisi., Ibrahim, M. O. & Adamu, B. (2023). Approximate Solution of a Fractional-Order Ebola Virus Disease Model with Contact Tracing and Quarantine. Applied Mathematics and Computational Intelligence (AMCI), 12(1), 30–42.

Ashgi, R., Pratama, M. A. A., & Purwani, S. (2021). Comparison of Numerical Simulation of Epidemiological Model between Euler Method with 4th Order Runge Kutta Method. International Journal of Global Operations Research, 2(1): 37-44.

Butt, A. I. K., Rafiq, M., Ahmad, W., & Ahmad, N. (2023). Implementation of computationally efficient numerical approach to analyze a Covid-19 pandemic model. Alexandria Engineering Journal, 69:341-362.

Costa, G. M. R., Lobosco, M., Ehrhardt, M., & Reis, R. F. (2023). Mathematical Analysis and a Nonstandard Scheme for a Model of the Immune Response against COVID-19.1-21. Available at https : //www.imacm.uni -wuppertal.de/fileadmin/imacm/preprints/2023/imacm2302.pdf

Cui,Q., Xu, J., Zhang, Q. and Wang, K.(2014).An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy. Advances in Difference Equations, 2014(172):1-15.

Derrick, W. R. and Grossman, S. I. (1987). A first course in differential equations with applications. West Publishing Company.

Diagne, M. L., Rwezaura, H., Tchoumi, S. Y., & Tchuenche, J. M. (2021). A mathematical model of COVID-19 with vaccination and treatment. Computational and Mathematical Methods in Medicine, 2021:1-16.

Dietz, K., & Heesterbeek, J. A. P. (2002). Daniel Bernoulli’s epidemiological model revisited. Mathematical Biosciences, 180(2): 1-21.

Egbelowo, O. (2018). Nonlinear elimination of drugs in one-compartment pharmacokinetic models: nonstandard finite difference approach for various routes of administration. Mathematical and Computational Applications, 23(2):1-21.

Egbelowo, O. F., & Hoang, M. T. (2021). Global dynamics of target-mediated drug disposition models and their solutions by nonstandard finite difference method. Journal of Applied Mathematics and Computing, 66: 621-643.

Elaiw, A. M., Aljahdali, A. K., & Hobiny, A. D. (2023). Dynamical Properties of Discrete-Time HTLV-I and HIV-1 within-Host Coinfection Model. Axioms, 12(2):1-26.

Foppa, I. M. (2017). A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology. Academic Press, Amsterdam.

Garba, S. M., Lubuma, J. M and Tsanou, B. (2020). Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa. Mathematical Bioscience, 328(2):1-16

Gu, Y., Khan, M., Zarin, R., Khan, A., Yusuf, A., & Humphries, U. W. (2023). Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach. Alexandria Engineering Journal, 67:1-21.

Ibrahim (2022). Application of Optimal Control Theory on a Covid-19 Mathematical Model. Seminar presented at the University of Usmanu Danfodio University

Kambali, P. N., Abbasi, A., & Nataraj, C. (2023). Nonlinear dynamic epidemiological analysis of effects of vaccination and dynamic transmission on COVID-19. Nonlinear Dynamics, 111(1): 951-963.

Mehdizadeh K, M., Rashidi, M. M., Shokri, A., Ramos, H., & Khakzad, P. (2022). A Nonstandard Finite Difference Method for a Generalized Black-Scholes Equation. Symmetry, 14(1):1-13.

Mehdizadeh K, M., Shokri, A., Wang, Y., Bazm, S., Navidifar, G., & Khakzad, P. (2023). Qualitatively Stable Schemes for the Black-Scholes Equation. Fractal and Fractional, 7(2):1-14

Mickens, R.E. and Washington, T. (2012). A note on an NSFD scheme for a mathematical model of respiratory virus transmission. J. Differ. Equ. Appl, 8: 525-529.

Miller, J. J., & O’Riordan, E. (2020). Robust numerical method for a singularly perturbed problem arising in the modelling of enzyme kinetics. Biomath, 9(2):1-12.

Mohammed, S. J., & Mohammed, M. A. (2021, May). Runge-kutta numerical method for solving nonlinear influenza model. In Journal of Physics:Conference Series, 1879(2):1-15.

Nana-Kyere, S., Boateng, F. A., Jonathan, P., Donkor, A., Hoggar, G. K.,Titus, B. D., & Adu, I. K. (2022). Global Analysis and Optimal Control Model of COVID-19. Computational and Mathematical Methods in Medicine, 2022:1-20.

Ochi, P. O., Agada, A. A., Timothy, J., Urum, T. G., Ochi, H. T., & Nworah, D. A. (2023). Stability Analysis Of A Shigella Infection Epidemic Model At Endemic Equilibrium. Fudma Journal of Sciences, 7(3), 48-64.

Onwubuoya, C., Nwanze, D. E., Erejuwa, J. S., & Akinyemi, S. T. (2018). An Approximate Solution of a Computer Virus Model with Antivirus using Modifed Differential Transform Method. International Journal of Engineering Research & Technology, 7(4): 154-161.

Onwubuoya, C., Akinyemi, S. T., Odabi, O. I., & Odachi, G. N. (2018). Numerical simulation of a computer virus transmission model using euler predictor corrector method. IDOSR Journal of Applied Sciences, 3(1):16-28.

Paul, A. K., & Kuddus, M. A. (2022). Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Results in Physics, 35:1-13.

Peter, O. J., Shaikh, A. S., Ibrahim, M. O., Nisar, K. S., Baleanu, D., Khan, I., &Abioye, A. I. (2020). Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator. Computers, Materials and Continua, 66(2):1-10.

Rabiu, M. and Akinyemi, S.T. (2016). Global Analysis of Dengue Fever in a Variable Population.. Journal of the Nigerian Association of Mathematical Physics, 33:363-376.

Raza, A., Chu, Y. M., Bajuri, M. Y., Ahmadian, A., Ahmed, N., Rafiq, M., & Salahshour, S. (2022). Dynamical and nonstandard computational analysis of heroin epidemic model. Results in Physics, 34:1-12

Riyapan, P., Shuaib, S. E., Intarasit, A., & Chuarkham, K. (2021). Applications of the Differential Transformation Method and Multi-Step Differential Transformation Method to Solve a Rotavirus Epidemic Model.Mathematics and Statistics, 9(1):71-80.

Srivastav, A. K., Tiwari, P. K., Srivastava, P. K., Ghosh, M., & Kang, Y. (2021). A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministicvs. stochastic. Mathematical Biosciences and Engineering, 18(1): 182-213.

Sweilam, N. H., Soliman, I. A., & Al-Mekhlafi, S. M. (2017). Nonstandard finite difference method for solving the multi-strain TB model. Journal of the Egyptian Mathematical Society, 25(2): 129-138.

ur Rehman, M. A., Kazim, M., Ahmed, N., Raza, A., Rafiq, M., Akg¨ ul, A.,... & Zakarya, M. (2023). Positivity preserving numerical method for epidemic model of hepatitis B disease dynamic with delay factor. Alexandria Engineering Journal, 64: 505-515,

WHO. (2021a). WHO lists two additional COVID-19 vaccines for emergencyuse and COVAX roll-out: AstraZeneca/Oxford-developed vaccines to reach countries in the coming weeks . https://www.who.int/news/item/15-02-2021-who-lists-two- additional-covid-19-vaccines-for emergency-use-and-covaxroll-out (Accessed 28th July, 2021).

Worldometer. (2022). https://www.worldometers.info/world-population/nigeriapopulation. (Accessed online on the 4th of May, 2022).

Zafar, Z. U. A., Inc, M., Tchier, F., & Akinyemi, L. (2023). Stochastic suicide substrate reaction model. Physica A: Statistical Mechanics and its Applications 610: 1-20.

Published

2023-12-27

How to Cite

Okolo, P. N., Makama, C. G., & Abah, R. T. (2023). A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT. FUDMA JOURNAL OF SCIENCES, 7(6), 103 - 116. https://doi.org/10.33003/fjs-2023-0706-2108