A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT

  • Patrick Noah Okolo Kaduna state University
  • Christiana Gideon Makama
  • Roseline Toyin Abah
Keywords: Tuberculosis, Basic reproduction number, local stability, global stability, sensitivity

Abstract

In this study, a mathematical model for Tuberculosis infection transmission dynamics is developed by incorporating testing and therapy of latent individuals, the isolation of infectious individuals and the treatment of the isolated individuals. The basic reproduction number was computed using the next generation matrix method. Analysis of the model at the disease-free equilibrium state and the endemic equilibrium states shows that it is locally and globally asymptomatically stable whenever the basic reproduction number is less than unity at the disease -free equilibrium state and locally and globally asymptotically stable whenever the basic reproduction number is greater than unity. The result from the sensitivity index of  show that the infection transmission parameter and other control parameters such as early detection and therapy, the isolation of infected individuals and treatment are crucial parameters to tuberculosis management.  It is shown from numerical simulations that the early detection and therapy, isolation and treatment of infected individuals will reduce the infection transmission. Further numerical results show that the combination of early detection and therapy, isolation and treatment of infectious individuals will decrease the infection transmission and its eventual eradication from the human population.

References

Andrawus, J., Eguda, F. Y., Usman, I. G., Maiwa, S. I., Dibal, I. M., Urium, T. G. & Anka, G. H. (2020). A mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. J.Appl.Sci.Environ.Manage., 24(5),917-922. https://doi.org/10.4314/jasem.v24i5.29. DOI: https://doi.org/10.4314/jasem.v24i5.29

Chitnis, N., Cushing, J. M. & Hyman, J. M. (2006). Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, 67(1), 24–45. DOI: https://doi.org/10.1137/050638941

Dauda, M. K., Magaji, A. S., Okolo, P. N., Bulus, J. & Shehu, U. S. (2020). Analyzing the transmission dynamics of tuberculosis in Kaduna Metropolis, Nigeria. Science World Journal, 15(4),76-82.

Diekmann, J. A., Heesterbeek, J. A. P. & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations. Journal of mathematical Biology, 28, 365-382. DOI: https://doi.org/10.1007/BF00178324

Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. (2010). The construction of next-generation matrix for compartmental epidemic models, Journal of the Royal Society Interface, 7, 873 – 885. DOI: https://doi.org/10.1098/rsif.2009.0386

Egonmwan, A.O., & Okouonghae, D. (2018) Analysis of a Mathematical model for tuberculosis. with diagnosis. Journal of applied Mathematics, Computing. Springer. https://doi.org/10.1007/s 12190-018-1172-1

Fall, A., Iggidr, A,, Sallet, G., & Tewa, J. J. (2007). Epidemiological models and lypunov functions. Mathematical Modelling of Natural Phenomena, 2(1), 55-73. DOI: https://doi.org/10.1051/mmnp:2008011

Hershkovitz, I., Donoghue, H. D., Minnikin, D. E., May, H., Lee, O. Y. C., Feldman, M., Galili, E., Spigelman, M., Rothschild, B. M. & Bar-Gal, G. K. (2015). Tuberculosis origin: The neolithic scenario. Tuberculosis, 95, 5122-5126. doi 10.1016/j.tube.2015.02.021. DOI: https://doi.org/10.1016/j.tube.2015.02.021

Houben, R. M. G. J. & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLOS Medicine, 13, e1002152. https://doi.org/10.1371/journal.pmed.1002152. DOI: https://doi.org/10.1371/journal.pmed.1002152

Hurwitz, A. (1964). On the conditions under which an equation has only roots with negative real parts. Selected Papers on Mathematical Trends in Control Theory.

Jerubet, R., Kimathi, G. S. & Wanaina, M. (2019). Analysis and modelling of tuberculosis transmission dynamics. Journal of Advances in Mathematics and Computer Science, 32(5),1-14. DOI: https://doi.org/10.9734/jamcs/2019/v32i530159

Kasznia-Brown, J. (2023). Global resources in the fight against tuberculosis. Pediatric Radiology, 53, 1746-1752. https://doi.org/10.1007/s00247-023-05663-0. DOI: https://doi.org/10.1007/s00247-023-05663-0

Korobeinikov, A. & Maini, P. K. (2004). A lyapunov functions and global stability for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 1(1), 57-60. DOI: https://doi.org/10.3934/mbe.2004.1.57

Korobeinikov, A. (2006). Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bulletin of Mathematical Biology, 30, 615-626. DOI: https://doi.org/10.1007/s11538-005-9037-9

Lakstimikan, V., Leela, S. & Martynyuk, A. A. (1989). Stability Analysis of Nonlinear Systems. New York: Marcel Dekker Inc.

Kuddus, M. D. A., McBryde, E. S., Adekunle, A. I., White, L. J. & Meehan, M. T. (2022). Mathematical analysis of a two-strain tuberculosis model in Bangladesh. Scientific Reports, 12,3634. https://doi.og/10.1038/s41598-022-07536-2. DOI: https://doi.org/10.1038/s41598-022-07536-2

LaSalle, J. P. (1976). The Stability of Dynamical Systems. CBMSNSF Regional Conference Series in Applied Mathematics, vol., 25, SIAM, Philadelphia.

Lienhardt, C., Glaziou, P., Upleker, M., Lonnroth, K., Gertahun, H. & Raviglione, M. (2012). Global tuberculosis control: lessons learnt and future prospects. Nat. Rev. Microbiol., 10(6), 407. DOI: https://doi.org/10.1038/nrmicro2797

Liu, S. Bi, Y. & Liu, Y. (2020). Modelling and dynamic analysis of tuberculosis in Mainland China from 1998 to 2017: the effect of DOTs strategy and further control. Theoretical Biology and Medical Modelling, 17(6),1-10. https://doi.org/10.1186/s12976-020-00124-9. DOI: https://doi.org/10.1186/s12976-020-00124-9

Mettle, F. O., Affi, P. O. & Twumasi, C. (2020). Modelling the transmission dynamics of tuberculosis in Ashanti Region of Ghana. Interdisciplinary Perspectives on Infectious Diseases, vol (2020). https://doi.org/10.1155/2020/4513854. DOI: https://doi.org/10.1155/2020/4513854

Nayeem, J. & Sultana, I. (2019). Mathematical analysis of the transmission dynamics of tuberculosis. American Journal of Computational Mathematics, 9,158-173. DOI: https://doi.org/10.4236/ajcm.2019.93012

Omale, D., Atokolo, W. & Akpa, M. (2019). Mathematical modelling of the transmission dynamics of tuberculosis and its control. (A case study of Ika General Hospital, Ankpa, Kogi State). IOSR Journal of Mathematics, 15(6), 37-57.

Sakula, A. (1982). Robert Koch: Centenary of the discovery of the tubercle bacillus, 1882. Thorax, 37, 246-251. Downloaded from http://thorax.bmj.com/ on September 13, 2023. DOI: https://doi.org/10.1136/thx.37.4.246

Sulayman, F., Abdullahi, F. A., Mohd, M., H. (2021). An SVEIR model of tuberculosis to assess the effect of an imperfect vaccine and other exogenous factors. Mathematics, 9(327). https://doi.org/10.3390/math9040327. DOI: https://doi.org/10.3390/math9040327

World Health Organisation (2020): Global tuberculosis report. WHO report.

World Health Organisation (2023). Global tuberculosis Report 2023 (last retrieved November, 25,2023).

Wu, J., Dhingra, R., Gambhir, M. & Remais, J. V. (2013). Sensitivity analysis of infectious disease models: methods, advances and their application. J. R Soc Interface, 10, 201221018. http://dx.doi.org/10.1098/rsif.2012.1018. DOI: https://doi.org/10.1098/rsif.2012.1018

Zhao, Y., Mingtao, L. & Yuan, S. (2017). Analysis of transmission and control of tuberculosis in Mainland China, 2015 – 2016, based on age-structure mathematical model. International Journal of Environmental Research and Public Health, 14,1192. doi:10.3390/ijerph14101192 DOI: https://doi.org/10.3390/ijerph14101192

Published
2023-12-27
How to Cite
OkoloP. N., Makama C. G., & Abah R. T. (2023). A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT. FUDMA JOURNAL OF SCIENCES, 7(6), 103 - 116. https://doi.org/10.33003/fjs-2023-0706-2108