CRITICAL ANALYSIS OF POWDER FLOW BEHAVIOUR OF DIRECTLY COMPRESSIBLE COPROCESSED EXCIPIENTS

  • Ilyasu Salim Department of Pharmaceutics and Pharmaceutical Technology, Bayero University, Kano,
  • Garba Mohammed Khalid Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
  • Abubakar Sadiq Wada Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
  • Suleiman Danladi Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
  • Fatima Shuaibu Kurfi Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
  • Umar Abdurrahman Yola
Keywords: Coprocessed excipients, Powder flow, Statistical modelling, Simple Linear Regression, Pearson’s Correlation, Correlation Matrix

Abstract

The aim of this pre-formulation study was to adopt simple linear regression modelling and correlation statistics to understand the associations between pharmacopoeial powder test methods using datasets generated from five commercial brands of directly compressible excipients with a specific focus to inferential implications in formulation design. Powder characterization was conducted using protocols defined in Chapter <1174> and <616> of the United States Pharmacopoeia (USP41-NF36). The study adopted a linear regression modelling analytics and correlation statistics using the fitting algorithm of OriginPro® (OriginPro, Version 2021b, OriginLab Corporation, Northampton, MA, USA). In the results, the modulus of Pearson’s product moment correlation coefficient was used to measure the strength of the linear association between test variables and a correlation matrix generated. Strong positive correlation modulus of Hausner’s Ratio (HR) with Carr’s index (r=+0.999) and static angle of repose (r=+0.932) were evident. Bulk density strongly correlates with tap density in the positive direction (r=+0.911). Tap density also shows a slight negative correlation with HR (r=-0.230), Carr’s index (r=-0.228), and static angle of repose (r==-0.421), while Carr’s index strongly correlated with static angle of repose (r=+0.933). In conclusion, modelling bivariate powder flow datasets has provided a powerful but simplistic statistical relationship for characterizing the modulus of association between HR, Carr’s index, and static angle of repose of the model excipients useful in preformulation design of pharmaceutical formulations.

References

Alderborn, G., & Frenning, G. (2017). Tablets and compaction. In M. Aulton & K. M. G. Taylor (Eds.), Aulton’s Pharmaceutics: The Design and Manufacture of Medicines (5th ed., pp. 517–563). Elsevier.

Amidon, G. E., Meyer, P. J., & Mudie, D. M. (2017). Particle, powder, and compact characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice: Second Edition (pp. 271–293). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802447-8.00010-8 DOI: https://doi.org/10.1016/B978-0-12-802447-8.00010-8

Angelini, C. (2019). Regression Analysis. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 722–730. https://doi.org/10.1016/B978-0-12-809633-8.20360-9 DOI: https://doi.org/10.1016/B978-0-12-809633-8.20360-9

Armstrong, N. A. (2007). Tablet Manufacture by Direct Compression. In J. Swarbrick (Ed.), Encyclopedia of Pharmaceutical Technology (3rd ed., Vol. 6, pp. 3673–3683). Informa Healthcare Inc.

Beakawi Al-Hashemi, H. M., & Baghabra Al-Amoudi, O. S. (2018). A review on the angle of repose of granular materials. Powder Technology, 330, 397–417. https://doi.org/10.1016/J.POWTEC.2018.02.003 DOI: https://doi.org/10.1016/j.powtec.2018.02.003

Bulk Density and Tapped Density of Powders | USP. (n.d.). Retrieved May 4, 2021, from https://www.usp.org/harmonization-standards/pdg/general-chapters/bulk-density-and-tapped-density-of-powers

Crowder, S., Delker, C., Forrest, E., & Martin, N. (2020). Determining Uncertainties in Fitted Curves. Introduction to Statistics in Metrology, 227–265. https://doi.org/10.1007/978-3-030-53329-8_10 DOI: https://doi.org/10.1007/978-3-030-53329-8_10

Goh, H. P., Heng, P. W. S., & Liew, C. V. (2018). Comparative evaluation of powder flow parameters with reference to particle size and shape. International Journal of Pharmaceutics, 547(1–2), 133–141. https://doi.org/10.1016/j.ijpharm.2018.05.059 DOI: https://doi.org/10.1016/j.ijpharm.2018.05.059

Help Online - Origin Help - Algorithms (Linear Regression). (n.d.). Retrieved May 26, 2023, from https://www.originlab.com/doc/en/Origin-Help/LR-Algorithm#The_Linear_Regression_Model

Krantz, M., Zhang, H., & Zhu, J. (2009). Characterization of powder flow: Static and dynamic testing. Powder Technology, 194(3), 239–245. https://doi.org/10.1016/J.POWTEC.2009.05.001 DOI: https://doi.org/10.1016/j.powtec.2009.05.001

Lu, H., Bian, Y., Wang, Z., Guo, X., Liu, H., Cao, J., & Qu, K. (2023). Characterization of non-Newtonian rheological behaviors of powders. Powder Technology, 417, 118281. https://doi.org/10.1016/J.POWTEC.2023.118281 DOI: https://doi.org/10.1016/j.powtec.2023.118281

Marchetti, L., & Hulme-Smith, C. (2021). Flowability of steel and tool steel powders: A comparison between testing methods. Powder Technology, 384, 402–413. https://doi.org/10.1016/J.POWTEC.2021.01.074 DOI: https://doi.org/10.1016/j.powtec.2021.01.074

Mohr, D. L., Wilson, W. J., & Freund, R. J. (2022). Linear Regression. Statistical Methods, 301–349. https://doi.org/10.1016/B978-0-12-823043-5.00007-2 DOI: https://doi.org/10.1016/B978-0-12-823043-5.00007-2

Moser, B. K. (1996). The General Mixed Model. Linear Models, 177–188. https://doi.org/10.1016/B978-012508465-9/50010-7 DOI: https://doi.org/10.1016/B978-012508465-9/50010-7

Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500–506. https://doi.org/10.1016/J.PROENG.2012.09.545 DOI: https://doi.org/10.1016/j.proeng.2012.09.545

Pérez, P., Suñé-Negre, J. M., Miñarro, M., Roig, M., Fuster, R., García-Montoya, E., Hernández, C., Ruhí, R., & Ticó, J. R. (2006). A new expert systems (SeDeM Diagram) for control batch powder formulation and preformulation drug products. European Journal of Pharmaceutics and Biopharmaceutics, 64(3), 351–359. https://doi.org/10.1016/j.ejpb.2006.06.008 DOI: https://doi.org/10.1016/j.ejpb.2006.06.008

Rojas, J., Buckner, I., & Kumar, V. (2012). Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. In Drug Development and Industrial Pharmacy (Vol. 38, Issue 10, pp. 1159–1170). https://doi.org/10.3109/03639045.2011.645833 DOI: https://doi.org/10.3109/03639045.2011.645833

Salehi, H., Barletta, D., & Poletto, M. (2017). A comparison between powder flow property testers. Particuology, 32, 10–20. https://doi.org/10.1016/J.PARTIC.2016.08.003 DOI: https://doi.org/10.1016/j.partic.2016.08.003

Salim, I., Kehinde, O. A., Abdulsamad, A., Khalid, G. M., & Gwarzo, M. S. (2018). Physicomechanical Behaviour of Novel Directly Compressible Starch-MCC-Povidone Composites and their Application in Ascorbic Acid Tablet Formulation. British Journal of Pharmacy, 3(1), 527. https://doi.org/10.5920/BJPHARM.2018.03 DOI: https://doi.org/10.5920/bjpharm.2018.03

Salim, I., Olowosulu, A. K., Abdulsamad, A., Gwarzo, M. S., Khalid, G. M., Ahmad, N. T., Eichie, F. E., & Kurfi, F. S. (2021). Application of SeDeM Expert System in the development of novel directly compressible co-processed excipients via co-processing. Future Journal of Pharmaceutical Sciences 2021 7:1, 7(1), 1–12. https://doi.org/10.1186/S43094-021-00253-Z DOI: https://doi.org/10.1186/s43094-021-00253-z

Twitchell, A. M. (2018). Mixing. In M. E. Aulton & K. M. Taylor (Eds.), Aulton’s Pharmaceutics: The Design and Manufacture of Medicines (5th ed., pp. 172–188). Elsevier.

United States Pharmacopoeia. (2015). <616> Bulk and tap densities of powders.

Wang, K., & Sun, C. C. (2021). Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate. International Journal of Pharmaceutics, 596, 120239. https://doi.org/10.1016/J.IJPHARM.2021.120239 DOI: https://doi.org/10.1016/j.ijpharm.2021.120239

Published
2024-02-13
How to Cite
SalimI., Khalid G. M., Wada A. S., Danladi S., Kurfi F. S., & Yola U. A. (2024). CRITICAL ANALYSIS OF POWDER FLOW BEHAVIOUR OF DIRECTLY COMPRESSIBLE COPROCESSED EXCIPIENTS. FUDMA JOURNAL OF SCIENCES, 7(6), 343 - 354. https://doi.org/10.33003/fjs-2023-0706-2080