ECONOMIC ANALYSIS OF MARKETING WHITE SKINNED SWEET POTATO (Ipomoea batatas) IN SELECTED MARKETS OF KANO STATE, NIGERIA.

Authors

  • Z. A. Balarabe
  • A. M. Yaro
  • S. A. Yakubu
  • A. U. Shu'aibu
  • S. A. Safiyanu
  • S. A. Aliyu

DOI:

https://doi.org/10.33003/fjs-2020-0402-207

Keywords:

Multistage sampling, potato, descriptive statistics, profitable analysis, marketing

Abstract

The study focused on the analysis of marketing White skinned Sweet Potato in selected markets of Kano State. Multistage sampling techniques was used for the study and data was collected using a structured questionnaire supplemented with key informant interview. A total of one hundred and seventeen 117 white sweet potato marketers were sampled. The analytical tool employed included simple descriptive statistics, net marketing margin, Gini Coefficient, marketing efficiency and multiple regression of the respondents in the study area. The result of the socio economic characteristics showed that 33% of the white sweet potato marketers were adult belonging to the age group of 30-39 years, 60% of marketers had household size of 1-10 members, 41% had 1-10 years of marketing experience, 91% were married with 91% males, the result of educational background study area shows that 46.8% had informal education. The result of the profitability analysis revealed that white sweet potato marketing was profitable with ₦574.52 and the total revenue realized for the marketing were ₦3,829.06. The result further revealed Gross Margin (GR) of 0.85 traded in the study area while return per naira invested was found to be 1.18 accrued from every 1.00 invested. The result also revealed that marketing of white sweet potato was efficient with 225.27%. The study further revealed variables such as: marketing experience, labour costs, transportation costs, loading and off-loading were found to be statistically significant. Results also indicate that the major determinant of net marketing income in the study area included labour 

References

Abu-Hussen, A.A.A. (2006). Synthesis and spectroscopic studies on ternary bis-Schiff-base complexes having oxygen and/or nitrogen donors. Journal of Coordination Chemistry, 59(2): 157-176.

Agwara, M. O., Ndifon, P. I., Ndosiri, N. B., Paboudam, A. G., Yufanyi, D. M. and Mohamadou, A. (2010). Synthesis, characterization and antimicrobial activities of Co(II), Cu(II) and Zn(II) mixed – Ligand complexes containing 1,10-phenanthroline and 2, 2’- bipyridine. Bulletin of the Chemical Society of Ethiopia, 24(3):383-389.

Alias, M.F and AbdulHassan, M. M. (2015). Synthesis and Characterization of Some Metal Complexes with their Sulfamethoxazoleand 4,4'-dimethyl-2,2'-bipyridyl and study Cytotoxic Effect on Hep-2 Cell Line. Baghdad Science Journal, 12(4): 740-751.

Anupama, B. and Kumari, C.G. ( 2013). Cobalt (II) complexes of ONO donor Schiff bases and N, N donor ligands: synthesis, characterization, antimicrobial and DNA binding study.

International Journal of Research in Chemistry and Environment, 3(2): 172-180.

Armani, V., Safari, N and Khavasi, H.R. (2007). Synthesis, characterization and crystal structure determination of iron(III) hetero-ligand complexes containing 2,2′-bipyridine, 5,5′-dimethyl-2,2′bipyridine and chloride, [Fe(bipy)Cl4][bipy•H] and [Fe(dmbipy)2Cl2][FeCl4]. Polyhedron, 26(15): 4257-426.

Bamigboye, M.O., Obaleye, J.A and Abdulmolib, S. (2012). Synthesis, characterization and antimicrobial activity of some mixed sulfamethoxazole-cloxacillin metal drug complexes. International Journal of Chemistry, 22(2): 105-108.

Bencini, A and Lippolis, V. (2010). 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coordination Chemistry Reviews, 254(17-18): 2096-2180.

Chaudhary, A., Bansal, N., Gajraj, A and Singh, R.V. (2003). Antifertility, Antibacterial, Antifungal and Percent Disease Incidence Aspects of Macrocyclic Complexes of Manganese (II). Journal of Inorganic Biochemistry, 96: 393-400.

Helio, G. B., Rosalia, A., Clarissa, P. F., Nilo, Z and Marcos, A. P. M. (2006). Recent advances in the chemistry of 1,10- phenanthrolines and their metal complex derivatives: synthesis and

promising applications in medicine. Technology and Catalysis,19:1-3.

Huovinen, P. (2001). Resistance to Trimethoprim-Sulfamethoxazole. Clinical Infectious Diseases, 32:1608–1614.

Imam H , Kumar B. and Shafayat M.D.(2011).Mixed Ligand Complexes of Transition Metal Chelates of 1- nitroso-2-naphthol and 8-hydroxyquinoline with Picolinic Acid and Quinaldinic acid. Oriental Journal of Chemistry, 27 (1): 287-291.

Janiak, C. (2000). A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of Chemical Society Dalton Transactions,21: 3885-3896.

Joseyphus, R.S and Nair, M.S. (2008).Antibacterial and antifungal studies on some schiff base complexes of zinc (II). Mycobiology, 36(2):93-98.

Kaes, C., Katz, A and Hosseini, M.W. (2000). Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2, 2′-Bipyridine Units. Chemical Reviews, 100(10): 3553-3590

Kitagawa, S., Noro, S and Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chemical Communications, 7: 701-707.

Kitagawa, S., Kitaura, R and Noro, S. (2004). Functional porous coordination polymers. Angewandte Chemie International edition, 43(18): 2334-2375.

Kellett, A., Howeb, O., Connor, M., McCann, M., Creaven, B. S., McClean, S., Foltyn-ArfaKia, A.,Casey, A and Devereux, M. (2012). Radical-induced DNA damage by cytotoxic square-planar copper (II) complexes incorporating o-phthalate and 1, 10-phenanthroline or 2, 2′-dipyridyl. Free Radical Biology and Medicine, 53:564-576.

Li, Q., Sun, D., Zhou, Y., Liu, D., Zhang, Q and Liu, J.(2012). Anticancer activity of novel ruthenium complex with 1, 10-phenanthrolineselenazole as potent telomeric G-quadruplex inhibitor. Inorganic Chemical Communications, 20: 142-146.

Liscombe, D.K., MacLeod, B. P., Loukanina, N., Nandi, O. I and Facchini, P. J. (2005)

Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(20): 2500-2520.

Masters, P.A., O’Bryan, T.A., Zurlo, J., Miller, D. Q and Joshi, N. (2003). Trimethoprim-Sulfamethoxazole Revisited. Archives of Internal Medicine, 163: 403-410.

McCann, M., Kellett, A., Kavanagh, K., Devereux, M and Santos, A. L. S. (2012). Deciphering the antimicrobial activity of phenanthroline chelators. Current Medicinal Chemistry, 19(17): 2703-2714.

Mondelli, M., Pavan, F., de Souva, P.C., Leite,C.Q., Ellena, J., Nascimento, O.R., Facchin, G and Torre, M.H. (2013).Study of A Series of Cobalt(II) Sulfonamide Complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. Tuberculosis. Crystal Structure of [Co (Sulfamethoxazole)2(H2O)2]•H2O. Journal of Molecular Structure,1036: 180–187

Mukherjee, R. (2000). Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects. Coordination Chemistry Reviews, 203(1): 151-218.

Osowole, A. A.,Wakil, S.M and Alao, O.K. (2015). Synthesis, Characterization and Antimicrobial Activity of Some Mixed Trimethoprim -Sulfamethoxazole Metal Drug Complexes. World Applied Sciences Journal, 33(2): 336-342.

Raman, N., Sakthivel, A and Rajasekaran, K. J. (2009) . Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. Journal of Coordination Chemistry, 62(5): 691-709.

Raman, N., Mahalakshmi, R and Mitu L.( 2014). Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: synthesis, structural elucidation and DNA binding properties of metal(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131: 355–364.

Rîmbu, C., Danac, R and Pui, A. (2014). Antibacterial Activity of Pd(II) Complexes With Salicylaldehyde-Amino Acids Schiff Bases Ligands. Chemical and Pharmaceutical Bulletin, 62(1): 12-15.

Rostamizadeh, S., Daneshfar, Z and Moghimi, H. (2019). Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity. European Journal of Medicinal Chemistry, 171: 364-371.

Santos, A. L. S., Sodre, C. L.,Valle, R. S.,Silva, B. A., Abi-Chacra, E. A., Silva, L. V., Souza-Goncalves, A. L., Sangenito, L. S., Goncalves, D. S., Souza, L. O. P., Palmeira, V. F., d'Avila-Levy, C. M., Kneipp, L. F., Kellett, A., McCann, M and Branquinha, M. H. (2012). Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis. Current Medicinal Chemistry, 19(17): 2715–2737.

Sarhan, B.M., Waheed, E.J. and Naema, B.Z. (2011). Synthesis and characterization of some mixed-ligand complexes containing N-Acetyl Tryptophan and alpha-picoline with some metal salts. Ibn Al-Haitham Journal for Pure and Applied Science 24(1):1-12

Sayar, E., Şahin, S., Cevheroğlu, Ş and Hincal, A. A. (2008). Comparison of dissolution profiles of two commercially available Co-Trimoxazole tablets. FABAD Journal of Pharmaceutical Sciences, 33: 87–94.

Scarborough, C.C and Wieghardt, K. (2011). Electronic structure of 2, 2′-bipyridine organotransition-metal complexes. Establishing the ligand oxidation level by density functional theoretical calculations. Inorganic Chemistry, 50(20): 9773-9793.

Schoffers, E.(2003). Reinventing Phenanthroline Ligands − Chiral Derivatives for Asymmetric Catalysis?. European Journal of Organic Chemistry, 2003 (7): 1145-1152.

Scotti, N., Ravasio, N., Psaro, R., Evangelisti, C., Dworakowska, S., Bogdal, D and Zaccheria, F. (2015). Copper mediated epoxidation of high oleic natural oils with a cumene–O2 system.

Catalysis Communication, 64: 80-85.

Selvaganapathy, M and Raman, N. (2016). Pharmacological Activity of a Few Transition Metal Complexes: A Short Review. Journal of Chemical Biology & Therapeutics, 1(2): 1-17

Sevlever, D., Mann, K.J and Medof, M.E. (2001). Differential effect of 1, 10-phenanthroline on mammalian, yeast, and parasite glycosylphosphatidylinositol anchor synthesis. Biochemical and Biophysical Research Communications, 288(5): 1112-1118.

Shahzadi, S., Ali, S., Bhatti, M.H., Fettouhi, M and Athar, M. (2006). Chloro-diorganotin (IV) complexes of 4-methyl-1-piperidine carbodithioic acid: Synthesis, X-ray crystal structures, spectral properties and antimicrobial studies. Journal of Organometallic Chemistry,691(8): 1797-1802.

Shubert, U.S and Eschbaumer, C. (2002). Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers. Angewandte Chemie International edition, 41(16): 2892-2926

Silver, L. L. (2011). Challenges of Antibacterial Discovery. Clinical Microbiology Reviews, 24(1): 71–109

Silverstein, R. M., Webster, F. X. and Kiemle, D. J. (2005). Spectrometric identification of organic compound, 7th ed. John-wiley. New York.

Singh, R.V and Chaudhary, A. (2004). Biologically relevant tetraazamacrocyclic complexes of manganese: synthetic, spectral, antimicrobial, antifertility and antiinflammatory approach. Journal of Inorganic Biochemistry, 98(11): 1712-1721.

Soliman, A.A. and Mohamed, G.G. (2004). Study of the ternary complexes of copper with

salicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochimica

Acta, 421(1): 151-159.

Sreekanth, A., Joseph, M., Fun, H.K and Kurup, M.R.P. (2006). Formation of manganese (II) complexes of substituted thiosemicarbazones derived from 2-benzoylpyridine: Structural and spectroscopic studies. Polyhedron, 25(6): 1408-1414.

Starosta, R., Komarnicka, U. K., Sobczyk, M and Barys, M. (2012). Laser induced multi-component luminescence of [CuNCS (1,10-phen) P (CH2N (CH2CH2) 2O) 3]—the first example of CuNCS complexes with diimines and tris(aminomethyl) phosphanes. Journal of Luminescence, 132(8): 1842-1847.

Sudhamani, C.N., Naik, H.S.B., Naik, T.R.R. and Prabhakara, M.C. (2009). Synthesis, DNA binding and cleavage studies of Ni (II) complexes with fused aromatic N-containing ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,72(3):643-647.

Taghreed, H. A., Israa, A.J. I. and Mohmmud, M. J.( 2015). Studies on the interaction and effect of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) and Cd(II) mixed-ligand complexes of cephalexin mono hydrate and furan-2-carboxylic acid to different DNA sources. Journal of Chemical and Pharmaceutical Research, 7(4): 815-816.

Tirkeso, R. A., Tsega, T. W and Amdemichael, T. (2019). Synthesis, Characterization, and Antibacterial Activities of 1H-Imidazo [5, 6-f] [1,10] Phenanthroline-2(3H)-Thione and Its Ni(II) and Cu(II) Complexes. Journal of Chemistry, 2019 :1-10.

Toshima, N., Shiraishi, Y., Teranishi, T., Miyake, M.,Tominaga, T., Watanabe, H., Brijoux, W.,

Bonnemann, H and Schmid, G. (2001). Various ligandâ€stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Applied Organometallic Chemistry, 15(3): 178-196.

Villar-Garcia, I. J., Abebe, A and Chebude, Y. (2012). 1, 10-Phenanthrolinium ionic liquids exhibiting excellent solubility for metal complexes: Potential solvents for biphasic and supported ionic liquid phase (SILP) Catalysis. Inorganic Chemistry Communications, 19: 1-3

Wojciechowska, A., Staszak, Z., Bronowska, W., Pietraszko, A and Cieslak-Golonka, A. (2001). Spectroscopic and structural studies of chromate ions in zinc complexes with 2, 2′-bipyridine. Analysis of the lowest triplet states in the CrO42− entity. Polyhedron, 20(15-16): 2063-2072.

Yan, B and Gu, Y. J. (2013). A novel white-luminescent ternary europium hybrids with phenanthroline functionalized periodic mesoporous organosilicas (PMOs) and 2-methyl-9-hydroxyphenalenone. Inorganic Chemistry Communication, 34: 75-78.

Yan, B and Gu, Y. J. ( 2013). A novel white-luminescent ternary europium hybrids with phenanthroline functionalized periodic mesoporous organosilicas (PMOs) and 2-methyl-9-hydroxyphenalenone. Inorganic Chemistry Communication, 34, 75-78.

Yang, C., Luo, J., Ma, J., Zhu, D., Miao, L., Zhang, Y., Liang, L and Lu, M. (2012). Luminescent properties and CH3COO− recognition of europium complexes with different phenanthroline derivatives as second ligands. Synthetic Metals, 162(13-14): 1097-1106.

Zhao, J.F., Chen, L., Sun, P.J. Hou, X.Y., Zhao, X.H., Li, W.J., Xie, L.H.,Qian, Y., Shi, N.E., Lai, W.Y., Fan, Q.L and Huang, W. (2011). One-pot synthesis of 2-bromo-4, 5-diazafluoren-9-one via a tandem oxidation–bromination-rearrangement of phenanthroline and its hammer-shaped donor–acceptor organic semiconductors. Tetrahedron, 67(10): 1977-1982.

Zhang, H. G., Tao, X. T., Chen, K. S., Yuan, C. X and Jiang, M. H. (2011). Synthesis and photophysical properties of a new two-photon absorbing chromophor containing imidazo [4, 5-f][1, 10] phenanthroline. Synthetic Metals, 161(3-4): 354-359.

Zahid H. Chohan, Hazoor A. Shad and Nasim F. H. (2009).Synthesis, characterization and biological properties of sulfonamide derived compounds and their transition metal complexes. Applied Organometallic Chemistry, 23(8): 319-328.

Published

2020-07-02

How to Cite

Balarabe, Z. A., Yaro, A. M., Yakubu, S. A., Shu’aibu, A. U., Safiyanu, S. A., & Aliyu, S. A. (2020). ECONOMIC ANALYSIS OF MARKETING WHITE SKINNED SWEET POTATO (Ipomoea batatas) IN SELECTED MARKETS OF KANO STATE, NIGERIA. FUDMA JOURNAL OF SCIENCES, 4(2), 129 - 134. https://doi.org/10.33003/fjs-2020-0402-207