THE EFFECT OF TEMPERATURE DEPENDENCE ON TIN PEROVSKITE SOLAR CELL USING SCAPS 1D

  • Jessica Amuchi Ukwenya
  • Joshua Adeyemi Owolabi
  • Mohammed Yusuf Onimisi
  • Eli Danladi
  • Samuel Michael Udeh
  • Ugbe Raphael Ushiekpan
Keywords: Perovskite Solar Cell, numerical simulation, SCAPS, conversion efficiency, ETM

Abstract

Perovskite solar cell (PSC) has become a force to reckon with in the renewable energy community because of its performance and low cost of production. Solar energy is one of the most demanding renewable sources of electricity. Electricity production using photovoltaic technology, not only helps meet the growing demand for energy, but also contributes to mitigate global climate change by reducing dependence on fossil fuels. Simulation is based on a mathematical design that describes the system. Numerical simulation technique of solar cells devices has over the years proven to be a viable tool for observing and understanding the properties of solar cell devices such as the optical, electrical and mechanical properties of complex solar cell devices. It also helps to reduce processing cost and time spent on solar cell device fabrication by providing useful information on how to vary the production parameters to improve the device performance. Solar cell capacitance simulator in one dimension (SCAPS-1D) was used in the modeling and simulation of sandwiched perovskite solar cells (PSCs) with a planar hetero-junction structure in the arrangement of the sandwiched model (FTO/CdS/CH3NH3SnI3/HTM). The energy band diagram, I-V characteristics and other parameters was obtained. The configuration for better performance was then determined, from which further simulations were carried out. When the operating temperature was varied the result shows an overall efficiency of 24.25%, FF of 82.80%, JSC of 30.73mA/cm2, VOC of 0.95V was obtained.

References

Anish M., Fabian B., Jesper G. A., Fredrik H., (2016). “A review of solar Energy Based heat and power generation Systems”, Renewable and Sustainable Energy Reviews, vol. 67, pp. 1047–1064. DOI: https://doi.org/10.1016/j.rser.2016.09.075

Balema V., (2009). “Alternative Energy Photovoltaics, Ionic Liquids, and MOFs,” Material Matters, vol. 4, no. 4, p. 1.

Du H. J., Wang W. C., and Zhu J. Z., (2016). “Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency,” Chinese Physics B, vol. 25. DOI: https://doi.org/10.1088/1674-1056/25/10/108802

Aditi T., Akshay J., Vipul K., Opanasyuk A. S., and Panchal C. J., (2017). “Numerical Simulation of Tin Based Perovskite Solar Cell: Effects of Absorber Parameters and Hole Transport Materials”, Journal of Nano and Electronic Physics. Vol. 9 No 3, 03038(4pp) DOI: 10.21272/jnep.9(3).03038 DOI: https://doi.org/10.21272/jnep.9(3).03038

Hossain M. I., Nouar T., and Fahhad H. A., (2015). "Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells." Solar Energy 120: 370-380. DOI: https://doi.org/10.1016/j.solener.2015.07.040

Salah M. M., Kamel M. H., Mohamed A., and Ahmed S., (2018) “A Comparative Study of Different ETMs in Perovskite Solar Cell with Inorganic Copper Iodide as HTM”, Optik, https://doi.org/10.1016/j.ijleo.10.052 DOI: https://doi.org/10.1016/j.ijleo.2018.10.052

Usha M., Victor V. S., Thyagarajan K., Raja R. M., and Babu B. J., (2017). “Design andsimulation of high efficiency tin halide perovskite solar cell”, International journal of renewable energy research Vol.7, No.4

Huang L., Sun X., and Li C., (2016). “Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation”, Solar Energy Materials and Solar Cells, vol. 157, pp. 1038–1047. DOI: https://doi.org/10.1016/j.solmat.2016.08.025

Minemoto T., and Murata M., (2014). “Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation,” Current Applied Physics, vol. 14, pp. 1428–1433. DOI: https://doi.org/10.1016/j.cap.2014.08.002

Bube R.H., (1998). Photovoltaic Materials. London: Imperial College Press. DOI: https://doi.org/10.1142/p054

Burgelman M., Nollet P., and Degrave .S., (2000). Thin Solid Films 361, 527. DOI: https://doi.org/10.1016/S0040-6090(99)00825-1

Mohammed Y. O., Joshua A. O., Jessica A. U., Alex B. B., and Ugbe R. U., (2020). “The study and characterization of lead-free tin perovskite solar cell with high efficiency using SCAPS”, Journal of NAMP. Vol 55. P139-153

Gu Y.F., Du H.J., Li N.N., Yang L., and Zhou C.Y., (2019). “Effect of carrier mobility on performance of perovskite solar cells”. Chinese physicist B, 28(4): 048802 DOI: https://doi.org/10.1088/1674-1056/28/4/048802

Behrouznejad F., Shahbazi S., Taghavinia N., Diau H.P. Wu, and E. W.G., (2016). “A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells”, Journal of Materials Chemistry A, vol. 4, pp. 13488–13498. DOI: https://doi.org/10.1039/C6TA05938D

Haider S. Z., Anwar H. and Wang M., (2018). “A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material”, Semiconductor Science and Technology 33035001. 12pp. DOI: https://doi.org/10.1088/1361-6641/aaa596

Burschka .J. Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., and Gratzel M., (2013). Sequential deposition as a route to high-performance Perovskite sensitized solar cells. Nature 499, 316–319. DOI: https://doi.org/10.1038/nature12340

Casas, G. A., Cappelletti, M. A., Cédola, A. P., Soucase, B. M., and Blancá, E. P. (2017). Analysis of the power conversion efficiency of perovskite solar cells with different Material as Hole-Transport Layer by numerical simulations. Super lattices and Microstructures, 107, 136-143. DOI: https://doi.org/10.1016/j.spmi.2017.04.007

Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. DOI: https://doi.org/10.1021/ja809598r

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., and Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 1228604. DOI: https://doi.org/10.1126/science.1228604

Liu, F., Zhu, J., Wei, J., (2014). “Numerical simulation: toward the design of high Efficiency planar perovskite solar cells,” Applied Physics Letters, vol. 104, article 253508. DOI: https://doi.org/10.1063/1.4885367

Liu P., Singh V. P., Jarro C. A., and Rajaputra S., (2011). “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS – CdTe solar cells,” Nanotechnology, vol. 22, no. 14. DOI: https://doi.org/10.1088/0957-4484/22/14/145304

Chen Q.Y., Huang Y., Huang P.R., Ma T., Cao C., and He Y. (2016). “Electro negativity Explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first principles study” China Physics B, DOI:10.1088/1674- 1056/25/2/027104, Vol. 25, No. 2pp.027104-1-6. DOI: https://doi.org/10.1088/1674-1056/25/2/027104

Fahrenbruch A.L., and Bube R.H., (1983). Fundamentals in Solar Cells. New York: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-247680-8.50013-X

Stamate M. D., (2003). "On the dielectric properties of dc magnetron TiO2 thin films", Applied Surface Science 218, no. 1-4: 318-323. DOI: https://doi.org/10.1016/S0169-4332(03)00624-X

Rahman I., Sakib F., Sarwar A., and Tanvir I. D., (2017). "A comparative study on different HTMs in perovskite solar cell with ZnOS electron transport layer." In Humanitarian Technology Conference (R10-HTC), IEEE Region 10, pp. 546-550. IEEE. DOI: https://doi.org/10.1109/R10-HTC.2017.8289019

Christians J. A., Raymond C. F., and Prashant V. K., (2013) "An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide", Journal of the American Chemical Society 136, no. 2. 758-764. DOI: https://doi.org/10.1021/ja411014k

Sepalage G. A., Steffen M., Alexander P., Andrew D., Scully F. H., Udo B., Leone S., and Yi B. C., (2015). "Copper (I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J–V hysteresis." Advanced Functional Materials 25, no. 35: 5650- 5661. DOI: https://doi.org/10.1002/adfm.201502541

Frolova L. A., Dremova N. N., and Troshin P. A., (2015). “The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI3) Perovskite solar cells.” Chemical Communication 51. 14917–14920. DOI: https://doi.org/10.1039/C5CC05205J

Fahrenbruch, A. L., and Bube, R. H,. (1983). Fundamentals of Solar Cells: Photovoltaic SolarEnergy Conversion. St Louis: Academic Press, 231-4

Published
2023-11-16
How to Cite
Ukwenya J. A., Owolabi J. A., Onimisi M. Y., Danladi E., Udeh S. M., & Ushiekpan U. R. (2023). THE EFFECT OF TEMPERATURE DEPENDENCE ON TIN PEROVSKITE SOLAR CELL USING SCAPS 1D. FUDMA JOURNAL OF SCIENCES, 7(2), 321 - 329. https://doi.org/10.33003/fjs-2023-0702-2044