OPTIMIZATION OF BIOETHANOL PRODUCTION FROM GAMBA GRASS (Andropogon gayanus) AND LOVE GRASS (Eragrostis tremula) USING ACID HYDROLYSIS

  • S. I. Muhammad
  • C. Muhammad
  • U. A. Birnin-Yauri
  • A. S. Baki
  • M. L. Mohammed
  • B. R. Ahmad
Keywords: Bioethanol, Gamba grass, Love grass, Saccharomyces cerevisiae, Acid hydrolysis

Abstract

Bioethanol is a widely utilized liquid biofuel and demand for it has been increasing, there is a need to enhance production of it from more affordable and environmentally friendly raw materials. In this study Gamba grass and Love grass both were used as resources for the production of bioethanol using dilute acid hydrolysis. Reducing sugar was determined after hydrolysis with UV spectrophotometer at 540 nm with pH values of 4.0, 4.5, and 5.0 of samples and the results were compared. Optimization of process parameters for comparative production of bioethanol from Gamba grass and Love grass using Saccharomyces cerevisiae were carried out using Response surface based on Box-Beinkhen design. The optimum yield of bioethanol from sample A was 69.0% and sample B was 67.0% at the temperature, pH and reaction time of 32.5°C, 5.0, 120 hours respectively. This research shows that Gamba grass has the highest yield of bioethanol when compared with Love grass. The studies revealed suitability of both Gamba and Love grass as potential sources of good quality bioethanol.

References

Abidin, S. Z., Mohammed, M. L., and Saha, B. (2023). Two-Stage Conversion of Used Cooking Oil to Biodiesel Using Ion Exchange Resins as Catalysts. Catalysts, 13(8). 1209; https://doi.org/10.3390/catal13081209 DOI: https://doi.org/10.3390/catal13081209

Adrian, A. (2021).Nutrient Agar and Nutrient Broth: Composition, Preparation and Differences https://labmal.com/2019/08/13/nutrient-agar-and-nutrient-broth/(Retrieved019/01/2023).

Banerjee, S., Kaushik, S., and Tomar, R. S. (2019). Global Scenario of Biofuel Production: Past, Present and Future. In A. A. Rastegari, A. N. Yadav, and A. Gupta (Eds.), Prospects of Renewable Bioprocessing in Future Energy Systems (pp. 499-518). Springer International Publishing. https://doi.org/10.1007/978-3-030-14463-0_18. DOI: https://doi.org/10.1007/978-3-030-14463-0_18

Folake, T. A., and Ibukun, E. O.(2022). Utilization of Date Palm (Phoenix dactyliferaL.) Wastes for Bioethanol Production using Pichia kudriavzeviiStrains Novel Research in Microbiology Journal 6(1): 1494-1514 DOI: https://doi.org/10.21608/nrmj.2022.217437

Humphrey, C. N., and Caritas, U. O. (2007). Optimization of Ethanol Production from Garcinia kola (Bitter Kola) Pulp Agrowaste.African Journal of Biotechnology, 6 (17): 2033-2037. DOI: https://doi.org/10.5897/AJB2007.000-2314

John, C. (2016.). Department of Agriculture and Fisheries, Weed of Australia Biosecurity State of Queensland,https://www.daf.qld.gov.au/__data/assets/pdf_file/0011/67466/IPA-Gamba-Grass-PP147 (Retrieved 25-07-2019).

Kemka, H. O., and David, B. K. (2013).Effect of Temperature and pH on Ethanol Production by a Blastomyces Species Isolated from the Intestine of Oil Palm Weevil (Rhynchophorus palmarum, coleopteraAfrican Journal of Biotechnology Vol. 12(6), pp. 588-591,

Ken,F.(2014).Eragrostistremula. Useful tropical plants http://tropical.theferns.info/viewtropical.php?id=Eragrostis+tremula(Retrieved 12-10-2019).

Kirk, B., and Aswad, N. (2013). Production of Ethanol as a Fuel Source by Using Sugar Molasses. Eur. J. Earth Environ. 10:74-81.

Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31: 426-428. DOI: https://doi.org/10.1021/ac60147a030

Mohammed, M. L., and Saha, B. (2022). Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes. Energies,15(8). https://doi.org/10.3390/en15082858 DOI: https://doi.org/10.3390/en15082858

Nadhim, H. H.,Hussain, M. F. and Ali, W. A.(2018). Optimization of Bioethanol Production from Biodegradable Municipal Solid Waste using Response Surface MethodologyJournal of Engineering and Sustainable Development,(01):47-65. DOI: https://doi.org/10.31272/jeasd.2018.1.5

Oyeleke, S. B. and Jibril, N.M. (2009). Production of Bioethanol from Guinea Corn Husk and Millet Husk.African Journal of Microbiology Reseach3 (4): 147-152.

Phu, V.N., Khanh, H.V., Ngoc, L.N., Xuan, T.T., Ho, P.H. and Kim, C.T. (2022). Lychee-Derived, Thermotolerant Yeasts for Second-Generation Bioethanol Production.Journal ofFermentation , 8(10), 515; https://doi.org/10.3390/fermentation8100515. DOI: https://doi.org/10.3390/fermentation8100515

Priya, Deora, P. S., Verma, Y., Muhal, R. A., Goswami, C. and Singh, T. (2022). Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48 1178-1184. https://doi.org/https://doi.org/10.1016/j.matpr.2021.08.227 DOI: https://doi.org/10.1016/j.matpr.2021.08.227

Rabah, A.B., Oyeleke , S.B., Manga, S.B. and Hassan L.G. (2011). Utilization of Millet and Guinea Corn Husk for BioethanolProduction.African Journal of Microbiology Research, 5(31) 5721-5724. DOI: https://doi.org/10.5897/AJMR11.1127

Romano, S.(2011). The Process of Ethanol Purification by Distillation. Alternative energy sourcesinfo.com http://www.alternativeenergysourcesinfo.com/ethanol-purification-by-distillation.html (Retrieved 02/08/2021)

Skerman, P. (2011). "Genus: Eragrostis Wolf". Germplasm Resources Information Network.United States Department of Agriculture.

Slavikova, E. andNadketrova, R. (2003). The Diversity of Yeast in Agricultural Soil. J. BasicMicrobiol.43(5):430-436. DOI: https://doi.org/10.1002/jobm.200310277

Sonali, P. and Banwari, L. (2007). Ethanol Production from Hydrolysed Agricultural Wastes Using Mixed Culture of ZymomonasMobilis and Candida Tropicalis, Biotechnol Lett 29:1839–1843. DOI: https://doi.org/10.1007/s10529-007-9493-4

Tambuwal, A.D., Baki, A.S. and Bello, A.(2016). Utilization of Carrot leaves for Bioethanol production as an alternative to fossil fuels. Journal of Biological Science Vol. 5(2), pp. 71-75.

Tambuwal, A.D., Muhammad, I.B., Alhaji, S., Muhammad, S. and Ogbiko, C. (2018).Production and Characterization of Bioethanol from Solanum LycopersicumStalk Hydrolysates by the Simultaneous Saccharification and Fermentation Using ZymomonasMobilisandSachromycesCerevisae. GSC Biological and Pharmaceutical Sciences, 5(3), 71-77. DOI: https://doi.org/10.30574/gscbps.2018.5.3.0146

Thangavelu, S. K., Ahmed, A. S., and Ani, F. N. (2016). Review on bioethanol as alternative fuel for spark ignition engines. Renewable and Sustainable Energy Reviews, 56, 820-835. https://doi.org/https://doi.org/10.1016/j.rser.2015.11.089 DOI: https://doi.org/10.1016/j.rser.2015.11.089

Tojo, G. and Fernandez, M. (2006). Oxidation of Alcohol to Aldehyde and Ketones: A Guide to Current Common Practice. Springer, New York, pp. 13-28

Yingjie, B. Bassam, A.Bipinchandra, K. S. Aarti, R. D. Pathikrit, S and Beom S. K.( 2019).Direct Ethanol Production from Cellulose by Consortium of Trichoderma ReeseiandCandida molischianaGreen Process Synth; 8: 416–420.https://doi.org/10.1515/gps-2019-0009. DOI: https://doi.org/10.1515/gps-2019-0009

Published
2023-11-14
How to Cite
Muhammad S. I., Muhammad C., Birnin-Yauri U. A., Baki A. S., Mohammed M. L., & Ahmad B. R. (2023). OPTIMIZATION OF BIOETHANOL PRODUCTION FROM GAMBA GRASS (Andropogon gayanus) AND LOVE GRASS (Eragrostis tremula) USING ACID HYDROLYSIS. FUDMA JOURNAL OF SCIENCES, 7(3), 342 - 350. https://doi.org/10.33003/fjs-2023-0703-2035