DELIGNIFICATION PRETREATMENT OF ACANTHOSPERMUM HISPIDUM BIOMASS FOR BIOETHANOL PRODUCTION

Authors

Keywords:

Bioethanol, Acanthospermum hispidum, Delignification, Pretreatment, Reducing sugar

Abstract

Bioethanol from lignocellulosic biomass is environmentally friendly and a renewable source of energy. This study used delignification as a pretreatment process to obtain the optimum conditions for reducing sugar production. The selected delignification parameters, including temperature (oc), time(hours) sodium chlorite concentration (g/dm3) and Volume of acetic acid (cm3). The Optimum conditions for delignification were: 70oc, 6 hr at -0.1 g/ dm3 sodium chlorite concentration and acid-3 cm3 of acetic. The R2 value obtained from the correlation between   reducing sugar concentration and time was R2 =0.796 The maximum bioethanol concentration was at 66h and the bioethanol productivity was 0.0304 g/L/h. The result obtain pointed that, the Acanthospermum hispidum can be used for both economic and environmental footprint studies and real world application.

Dimensions

Ahmad, M.A., Bagudo, B.U., Tambuwal, A.D and Ub a, A. (2015).Effect of key parameter on bio ethanol production from country mallow and water hyacinth. International Journal of Applied Chemisty.11(3).pp277 -289

Abdullah SSS, Shirai Y, Bahrin EK, Hassan MA, Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Industrial Crops and Products 2015; 63: 357–361.

Almeida, João RM l.(2007). “Increased Tolerance and Conversion of Inhibitors in Lignocellulosic Hydrolysates by Saccharomyces Cerevisiae.” Journal of Chemical Technology & Biotechnology 82(4):340–49.

Box,GEP, Hunter, WG, Hunter, JS (1978). Statistics for experimenters. John Wiley & Sons. p. 672.

Demirbas A. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science. 2004;30(2):219–230. doi: 10.1016/j.pecs.2003.10.004.

Ding, S. Y, & Himmel, M. E. (2006). The maize primary cell wall microfibril: A new model derived from direct visualization. Journal Agric. Food Chem. , 54, 597-606. COR

Humphrey, C.N. and Caritas, U.O. (2007).Optimization of ethanol production From Garcinomia Kola (bitter kola) pulp agro waste. African journal of Biotechnology.6(17)pp2

Gupta, R Sharma, K.K., and Kuhad, R.C (2009). Simultaneous and saccharification and fermentation of prosopis jutiflora, a woody substrate for the production of cellulosicethanol by Saccharomyces cerevisiae and Pichia Stipitis-NCIM 3498.Bioresouce Technology;100,1214-

Jambo, Siti Azmah 2016. “A Review on Third Generation Bioethanol Feedstock.” Renewable and Sustainable Energy Reviews 65:756–69.

Lay JJ (2000). Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68(3):269-278

Lin, Y., W. Zhang, C. Li, K. Sakakibara, and S. Tanaka. (2012). “Factors Affecting Ethanol Fermentation Using Saccharomyces Cerevisiae BY4742.” Biomass and Bioenergy 47:395–401.

Mahmoudi S., Baeyens J., Seville J. P. K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy. 2010;34(9):1393–1409. doi: 10.1016/j.biombioe.2010.04.013.

Oyeleke, S.B. and Jibrin, N.M. (2009) production of bioethanol from guinea corn husk and millet husk. African journal of microbiology research 3(4): 147-152

Pavlecic M, Vrana I, Vibovec K, Horvat P, Santek B. Ethanol production from different intermediates of sugar beet processing. Food Technol. Biotechnol 2010; 48, 362-367.

Prasertwasu, Sirirat 2014. “Efficient Process for Ethanol Production from Thai Mission Grass (Pennisetum Polystachion).” Bioresource Technology 163:152–59.

Rabah, A.B., Oyeleke, S.B., Manga, S.B. and Hassan, L.G (2011).Utilization of millet and guinea corn husks for bioethanol production. African Journal of microbiology Research.5(31):5721-5724

Ramos CL, Duarte WF, Freire AL, Dias DR, Eleutherio ECA, Schwan RF. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae. Braz. J.Microbiol 2013; 44: 935-944.

Renewable Fuels Association. (2016). “World Fuel Ethanol Production.” Analysis of Public and Private Estimates. Retrieved July 7, 2017 (http://www.ethanolrfa.org/resources/industry/statistics/world/).

Swana, Jeffrey, Ying Yang, Mohsen Behnam, and Robert Thompson. (2011). “An Analysis of Net Energy Production and Feedstock Availability for Biobutanol and Bioethanol.” Bioresource Technology 102(2):2112–17.

Tussane, S; Kamchai, N;Sompong, O and Prawil , k and Kioattisak , P 2015 International conference on alternative Energy in developing countries and energy economies.p111-118

Ramos CL, Duarte WF, Freire AL, Dias DR, Eleutherio ECA, Schwan RF. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae. Braz. J.Microbiol 2013; 44: 935-944

World Energy Council 2016.”World Energy Resources” United Kingdom 1:22-23

Wu X, Staggenborg S, Propheter JL, Rooney WL. Yu J, Wang D. Features of sweet sorghum juice and their performance in ethanol fermentation. Ind. Crops. Prod. 2010; 31: 164-170.

Wyman, C.E., Decker,S.R., Himmel,M.E.,Brandy,J.W., Skopec, C.E. and ViiKari, L.(2005) in Polysaccharides, 2nd edition;Dumitriu, S., Ed;Marcel Dekker:New York .Available online at http://www.sciencedirect.com/science /article

Zhang, Y-H. P, & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng., , 88, 797-824

Published

31-10-2023

How to Cite

DELIGNIFICATION PRETREATMENT OF ACANTHOSPERMUM HISPIDUM BIOMASS FOR BIOETHANOL PRODUCTION. (2023). FUDMA JOURNAL OF SCIENCES, 7(5), 281-287. https://doi.org/10.33003/fjs-2023-0705-2024

How to Cite

DELIGNIFICATION PRETREATMENT OF ACANTHOSPERMUM HISPIDUM BIOMASS FOR BIOETHANOL PRODUCTION. (2023). FUDMA JOURNAL OF SCIENCES, 7(5), 281-287. https://doi.org/10.33003/fjs-2023-0705-2024

Most read articles by the same author(s)