MATHEMATICAL MODELLING AND STABILITY ANALYSIS OF MONKEY POX TRANSMISSION DYNAMICS IN NIGERIA
Abstract
In this paper, we proposed a mathematical model for monkey pox disease dynamics. This model is divided into two sub-population which is a system of non-linear differential equations. It is made up of seven (7) compartments such as the Susceptible, the Infectious, the Treatment, the Recovery, the Susceptible, the Infectious, and the Recovery (SITR-SIR). The model is formulated with the aid of a schematic diagram using appropriate parameters. The model analysis was carried out to show the feasible region, the disease-free equilibrium points, the basic reproduction number, and the local stability of the model. The model was solved to show the effect of the parameters.
References
Bhunu, C., & Mushayabasa, S. (2011). Modelling the Transmission Dynamics of Pox-like infections. IAENG International Journal of Applied Mathematics.
Emeka, P., Ounorah, M., Eguda, F., & Babangida, B. (2018). Mathematical Model for Monkeypox Virus Transmission Dynamics. Epidemiology. DOI: 10.4172/2161-1165.1000348
Emmanuel, A., Ugo, M., Godwin, N., & Malachy I, O. (2020). Monkeypox Virus in Nigeria: Infection Biology,Epidemiology, and Evolution. Multidisciplinary digital publishing insistute.
Nigeria Centre for Disease (NCDC) (2022). UPDATE ON MONKEYPOX INNIGERIA”. Retrieved from https://ncdc.gov.ng/.
Olumuyiwa, J. P., Sumit, K., Nitu, K., Festus, A. O., & Kayode, O. (2021). Transmission dynamics of Monkeypox virus: a mathematical Modelling Approach. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01313-2
Somma, S. A., Akinwande, N. I., & Chado, U. D. (2019). A MATHEMATICAL MODEL OF MONKEY POX VIRUS TRANSMISSION DYNAMICS. Ife Journal of Science. https://dx.doi.org/10.4314/ijs.v21i1.17
Sulaiman, U., & Ibrahim, I. A. (2017). Modeling the Transmission Dynamics of the Monkeypox Virus Infection with Treatment and vaccination interventions. Journal of Applied Mathematics and Physics.
Silas, J., & Ikechukwu, A. (2019). KNOWLEDGE AND PERCEPTION OF MONKEYPOX DISEASE IN YENAGOA, BAYELSA STATE. FUDMA Journal of Sciences (FJS). 3(4), 418 - 426. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1666
Silesh, S. S., Henok, D. D., & Tadesse, A. (2023). Mathematical Modelling of COVID-19 Transmission Dynamics with Vaccination: A Case Study in Ethiopia. Hindawi Discrete Dynamics in Nature and Society. Article ID 2972164, 25 pages https://doi.org/10.1155/2023/2972164
TeWinkel, R. E. (2019). Stability Analysis for the Equilibria of a Monkeypox. University of Wisconsin Milwaukee. Theses and Dissertations. 2132. https://dc.uwm.edu/etd/2132
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences