COMPARATIVE ANALYSIS OF COX MIXED CURE MODEL WITH PARAMETRIC MODELS USING TOXIC DATA

Authors

  • Mustapha Usman Usmanu Danfodiyo University Sokoto
  • U. Usman
  • S. Suleiman
  • A. M. Dogondaji

DOI:

https://doi.org/10.33003/fjs-2023-0705-1980

Keywords:

cox missed cure model, censoring, survival, Akaike Information Criterion

Abstract

The investigation focused on examining of the survival analysis which entails the design and study of the occurrence and time of survival events. The study aimed to compare the result of the analysis using semi parametric model; cox mixed cure model and two parametric models; weibull and lognormal model to determine the model that fit the toxic data. The data was obtained from State Special Hospital Maiduguri (SSH) from 2016-2020. Akaike information criterion (AIC) was used to compare and evaluate the models. Results show that Cox mixed cure model has 13.65 with least AIC value, Weibull with 18.29 and lognormal with 18.30 with highest AIC value. The study concludes that semi parametric cox mixed cure model is the suitable to fit the toxic data.

References

Adeleye, J. O., Emuze, M. E., Azeez, T. A., Esan, A. Balagun, W. O. & Akande, T. O. (2020). Clinical Profile of Males with Graves'Disease: A Two Year Review in Tirtiary Hospital in Nigeria. Journal of Clinical and Biomedical, 1-3.

Als, C., Gedeon, P., Rosler, H., Minder, C,. Netzer, P. & Laissue J. A. (2015). Survival Analysis of 19 Patients with Toxic. Medical Statistics, 2.

Amico, M; keilegom, I. & Legran, C. (2018). The Single Index/Cox Mixed Cure Model. medstats, 75, 3.

Berkson, J. & Gage, R. P. (1952). Survival Curve for Cancer Patients Following Treatment. American Statistical Association, 501-512.

Boag, J. (1949). Maximum Likilihood Estimates of the proportion of patients curved by Cancer Therapy. Royal Statistical Society, 11(1), 15-40.

Cohen, A. C. & Whitten, B. (1983). Modified Maximun Likelihood and Modified Momment Estimation for Three Parametric Weibull ditribution. Comm. Stat Theory Method 2, 128-150.

Cox, D. R. (1972). Regression Model and Life Tables. Journal of Royal Statistical Socirty, B 34, 187-220.

Elvan, A. H., Asli, s., Burak, U., Omar, D., Mehmet, N.O., & Gui, K. (2010). Comparison of Five Survival Models:Breast Cancer Registry, Data from Ege University Cancer Registry Centre . Journal Med. 30(5), 78-81.

Farewell, V. (1982). The use of mixeture model for the analysis of Survival data with long-term survivors . Biometrics 38, 10411046.

Feingold, K. R., Anawait, B. & Boyce, A. (2015). Graves' Disease and Manifestation of Thyrotoxicois. medstatistics.

Frank, E-S. & Matthias, D. (2019). Introduction to Survival Analysis in Practice. Medstatistics, 20-25.

Gien, S. (2017). "Semi Parametric Model: Simple Defination and Example". Statistics How to. Com.

Golub, J. (2007). Survival Analysi and European Under Decision Making. Euripean Union Politics, 155-159.

Henry, B. B. & David, S. C. (2015). Management of Graves' Disease. Clinical Review & Education, 314, 1-3.

Hui, P. Z., Xin, X., Chuan, H. Y., Ahmed, A., Shun, F. L. & Yu, K. D. (2011). Application of Weibull Regression Model for Survival with Gatric Cancer (3RD ed.). John Wiley.

Judy, P. S., & Jeremy, T. (2000). Estimation in a Cox Proportional Hazards Cure Model. pubmed, 13-14.

Kaplan, E. L. & Meier, P. L. (1958). Non Parametric Estimation from Incomplete Observation Journal of American Statistical Association, 212-219.

Lawless, J. F. (2011). Statistical Model for Lifetime Data. John Waley & Sons.

Lee, H. (1982). On Clinical Trial and Survival Analysis. Singapore Medical Journal 23: 164-167.

Nazario, B. (2021, September 22). WebMD. Retrieved December 4, 2021

NIDDK (2017). National Institute of Diabetics Digestive and Kidney, Retrieved from 09-o1 2022, https://www.niddk.nih.gov/about-niddk

Nor, A. A., Wan Razita, M., Nor, A. M., Zainudin, M. A., Lailano, I., Saleha, N. I. T. Nasiru, M. & Muhammad, K. . (2013 ). Survival Rate of Breast Cancer Patient in Malaysia A Population-Based Study . Asian Parcific Journal of Cancer Prevention, 1-2.

Peng, Y. & Dear, K. B. G. (2000). A non Parametric Mixture Modelfor Cure Rate Estimation . Biometric 56 , 237-243.

Peng, Y. W. (2003). Fetting Semiparametric Cure Model, Competational Statistics and Data Analysis. Medicine statistics, 481.

Perperoglou, A., Keramopoulos, A & Van Houwelingin, H. C. (2007). An Application to Breast Cancer. Statistics in Medicine, 26.
Rao, N. & C. R. (2004). Handbook of Statistics 23: Advances in Survival Analysis. Elseview.

Royston, P. (2001). The Lognormal Distribution as a Model for Survival Time In Cancer. With an Emphasis on Prognastics Factors. Statistica Neerlandica 55(1), 89-104. doi:101111/1467-tesh9574. 00168

Sy, J. P. & Tailor,J.M.G. (2000). Estimation in a Cox Proportion Hazard Cure Model. Biometric 56, 237-243.

Umar, U. & Marafa, H. M. (2020). Comparative Analysis of the Cox Semi-parametric and Weibull Parametric Models on Colorectal. Internation Journal of Data Science Analysis, 6, (1), 41-47. doi:10.11648/l.ijdsa.20200601.15

Weibull, W. (1951). Statistical Distribution of Wide pplicability: . Journal of Applied Mechanics 18:, 393-297.

Weisteir, E. W. (2020). "Log-normal Distribution". In Mathwolrd A Wolfrom. https://mathwolrd.wolfrom.com/LogNormal Distribution.html

You and Your Hormone (2021). Society for Endocrinology https://www.yo urhormones.info/about/

Published

2023-10-31

How to Cite

Usman, M., Usman, U., Suleiman, S., & Dogondaji, A. M. (2023). COMPARATIVE ANALYSIS OF COX MIXED CURE MODEL WITH PARAMETRIC MODELS USING TOXIC DATA. FUDMA JOURNAL OF SCIENCES, 7(5), 375 - 379. https://doi.org/10.33003/fjs-2023-0705-1980