INTEGRATING REMOTE SENSING DATA WITH HYDROTHERMAL ALTERATION MAPPING AND GEOCHEMICAL CHARACTERISTICS OF PRECAMBRIAN ROCKS ACROSS MAMBILLA PLATEAU, NORTHEASTERN, NIGERIA

  • Yohanna Andarawus
  • Othniel Kamfani Likkason Abubakar Tafawa Balewa University Bauchi
  • Maigari Abubakar Sadiq Abubakar Tafawa Balewa University Bauchi
  • Sani Ali
  • Iyakwari Shekwonyadu
  • Adamu Abubakar
  • Adamu Abubakar Federal University Birnin Kebbi
  • Frankie Ojo Balogun
  • Nengak Musa
  • Ahmad Aliyu Ibrahim Federal University of Lafia
Keywords: Remote sensing datasets, Hydrothermal alteration mapping, Geochemical characteristics, Mineralization potentials, Precambrian rocks

Abstract

Mineral exploration must include the mapping of hydrothermally altered regions, which are typically connected to mineralization. This study presents a strategy for integrating remote sensing data with the geochemical characteristics of Precambrian rocks from the Mambilla Plateau in northern Nigeria. Tectonically, the lineaments were fractures with the following orientations: NE-SW, NW-SE, ENE-WSW, and N-S. The distinct spectral reflectance and absorption properties of remotely sensed Landsat 8 data in the visible, near-infrared, shortwave-infrared, and thermal infrared portions of the electromagnetic spectrum were exploited in various digital image processing approaches. Mapping hydrothermal alteration minerals was done effectively and efficiently using band ratios (red/blue, SWIR 2/NIR, SWIR 1/NIR), spectral band combinations (Kaufmann and Sabins ratios), and principal component analysis. Ferric, phyllic, propylitic, and argillic iron all underwent changes as a result of hydrothermal alteration. Regional metamorphism also resulted in important alteration processes such as epidotization, sericitization, muscovititization, kaolinitization, and chloritization. Geochemically, on average, the Al2O3, SiO2, Fe2O3, CaO, MgO, K2O, Na2O, Li2O content are 12.04 %; 54.83%; 4.76%,  7.16%,  3.02%, 10.22%, 4.53%, 1.35%  while MnO, P2O5  and TiO2 are less than 1%. The average base metal composition revealed that 60% of them had positive anomalies, which indicate mineralization, and 40% had negative anomalies. About 50% of the samples had positive anomalies, which indicated strong potential for harbouring mineralization based on the makeup of trace elements. Geochemical studies revealed the presence of lithium, titanium, and silica oxides in substantial concentrations. The local mineralization is governed by structural factors.

References

Abdul Malik, N.F.; Garba, I.; Danbatta, U.A.; Hamza, H (2018). Delineation and correlation of lineaments using landsat-7 ETM+, DEM and aeromagnetic datasets: Basement complex of shanono, northwestern Nigeria. J. Geol. Geophys, 7, 445. DOI: https://doi.org/10.4172/2381-8719.1000445

Abdi, H. and Williams, L.J.( 2010). Principal component analysis.Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2. pp. 433–459. DOI: https://doi.org/10.1002/wics.101

Abhary, A. and Hassani, H. 2016. Mapping hydrothermal mineral deposits using PCA and BR methods in Baft 1: 100000 Geological Sheet, Iran. 2. http://www .academia .edu/ 28268172/ Mapping_HydrothermalMineral_De posits UsingPCA and BR Methods in Baft1100000 Geological Sheet_Iran

Abrams, M.; Crippen, R.; Fujisada, H (2020).ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD).Remote Sens., 12, 1156. DOI: https://doi.org/10.3390/rs12071156

Ananaba, S.E.; Ajakaiye, D.E(1987). Evidence of tectonic control of mineralization in Nigeria from lineament density analysis A Landsat-study.Int. J. Remote Sens. 8, 1445–1453. DOI: https://doi.org/10.1080/01431168708954788

Antoine, D (2013). TravauxPratiques de télédétectionspatiale.Arlon Campus Environnement, Université de Liège, Belgique, 84p.

Bedini, E. 2009.Mapping lithology of the Sarfartoqcarbonatite complex, southern West Greenland, using HyMap imaging spectrometer data.Remote Sensing of Environment, vol. 113.pp.1208–1219. DOI: https://doi.org/10.1016/j.rse.2009.02.007

Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T.,andBangash, H.A. (2014). Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, vol. 69, no. 1. pp. 63–178. DOI: https://doi.org/10.1016/j.jsg.2014.10.007

Berk, A., Bernstein, L., Anderson, G., Acharya, P., Robertson, D., Chetwynd, J., and Adler-Golden, S. (1998). Modtrancloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environment,vol. 65. pp. 367–375. DOI: https://doi.org/10.1016/S0034-4257(98)00045-5

Bhattacharya, S., Majumdar, T., Rajawat, A., Panigrahi, M., and Das, P. (2012).Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements.International Journal of Remote Sensing, vol. 33. pp. 5438–5450. DOI: https://doi.org/10.1080/01431161.2012.661094

Black R (1980). Precambrian of West Africa. Episodes 4:3–8 DOI: https://doi.org/10.18814/epiiugs/1980/v3i4/001

Boardman, J. W. and Kruse, F. A(1994). Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing. Environmental Research Institute of Michigan, Ann Arbor, MI, pp. I-407-418.

Burke K.C, and Dewey J.F (1972). Orogeny in Africa. In: Dessauvagie TFJ, Whiteman AJ (eds), Africageology. University of Ibadan Press, Ibadan, pp 583–608

Calvin, W.M., Littlefield, E.F., and Kratt, C. (2015).Remote sensing of geothermal-related minerals for resource exploration in Nevada.Geothermics, vol. 53.pp. 517--526. DOI: https://doi.org/10.1016/j.geothermics.2014.09.002

Chander, G. and Markham, B. (2003).Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges.IEEETransactions on Geoscience and Remote Sensing, vol. 41. pp. 2674–2677. DOI: https://doi.org/10.1109/TGRS.2003.818464

Chavez, P.S. (1996).Image-based atmospheric corrections-revisited and improved.Photogrammetric Engineering and Remote Sensing, vol. 62. pp. 1025–1035.

Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., and Qinglin, X. (2011) .A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China.Computers & Geosciences, vol. 37.pp. 662–669. DOI: https://doi.org/10.1016/j.cageo.2010.11.001

Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., and Righini, G. (2013). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, vol. 6. pp. 4529–4546. DOI: https://doi.org/10.1007/s12517-012-0725-0

Clark, R.N., King, T.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990).High spectral resolution reflectance spectroscopy of minerals.Journal ofGeophysical Research: Solid Earth, vol. 95. pp. 12653–12680. DOI: https://doi.org/10.1029/JB095iB08p12653

Clark, R.N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy.Manual of Remote Sensing, vol. 3. pp. 2.2–2.4.

Dada .S.S (2006). Proterozoic evolution of Nigeria. In: Oshi O (ed) The basement complex of Nigeriaand its mineral resources (A Tribute to Prof. M. A. O. Rahaman). Akin Jinad& Co. Ibadan,pp 29–4

Da Cunha Frutuoso, R.M. (2015).Mapping hydrothermal gold mineralization using Landsat 8 data.A case of study in Chaves license, Portugal.https://sigarra.up.pt/fcup/pt/pub_geral.show_file?pi_doc_id=44053

Deslandes, S (1989). Initiation aux méthodes de traitementnumérique des images satellites, sur le système PCI Inc. EASUPACE. CARTEL. 32p

Di Tommaso, I. and Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore GeologyReviews, vol. 32. pp. 275–290. DOI: https://doi.org/10.1016/j.oregeorev.2006.05.004

Dos Santos, M.A.; van Lier, Q.D.; van Dam, J.C.; Freire, A.H(2016). Determination of empirical parameters for root water uptake models.Hydrol. Earth Syst. Sci. Discuss, 21, 473–493. DOI: https://doi.org/10.5194/hess-21-473-2017

Drews-Armitage, S., Romberger, S., and Whitney, C. (1996). Clay alteration andGold deposition in the Genesis and Blue Star deposits, Eureka County, Nevada. Economic Geology, vol. 91. pp. 1383–1393. DOI: https://doi.org/10.2113/gsecongeo.91.8.1383

Dupreez.J.W, Barber W (1965).The distribution and chemical quality of ground water in Northern Nigeria.Bulletin 36.Geological survey of Nigeria 93.

El-Makky, A.M. (2011). Statistical analyses of La, Ce, Nd, Y, Nb, Ti, P, and Zr inbedrocks and their significance in geochemical exploration at the UGarayat gold mine Area, Eastern Desert, Egypt. Natural ResourcesResearch, vol. 20.pp. 157. DOI: https://doi.org/10.1007/s11053-011-9144-2

Filzmoser P, Garrett RG, and Reimann C (2005) Multivariate outlier detection in exploration geochemistry. Computers and Geosciences 31: 579–587. DOI: https://doi.org/10.1016/j.cageo.2004.11.013

Frantz C (1981). Development without communities: Social fields, Network and Action in the Mambilla Grasslands of Nigeria. J. Human org. pp. 211-220. DOI: https://doi.org/10.17730/humo.40.3.d352174l0178x238

Fortescue, J.A.C(1992). Regional Geochemical Mapping.Geophysics/Geochemistry Section, Ontario Geological Survey, PP1348-1394.

Gabr, S., Ghulam, A., and Kusky, T. (2010). Detecting areas of high-potentialgold mineralization using ASTER data. Ore Geology Reviews, vol. 38.pp. 59–69. DOI: https://doi.org/10.1016/j.oregeorev.2010.05.007

Gale.E.(2017).Education, learning and research resources.https://www.gale.com/Accessed 15 November 2017.

Gholami, R., Moradzadeh, A., and Yousefi, M. (2012).Assessing the performance of independent component analysis in remote sensing data processing.Journal of the Indian Society of Remote Sensing, vol. 40. pp. 577–588. DOI: https://doi.org/10.1007/s12524-011-0189-9

Grunsky, E.C., Mueller, U.A., and Corrigan, D. (2014). A study of the lake sediment geochemistry of the Melville Peninsula using multivariatemethods: applications for predictive geological mapping. Journal ofGeochemical Exploration, vol. 141. pp. 15–41. DOI: https://doi.org/10.1016/j.gexplo.2013.07.013

Han, T. and Nelson, J. (2015). Mapping hydrothermally altered rocks withLandsat 8 imagery: A case study in the KSM and Snowfield zones,northwestern British Columbia. British Columbia Geological Survey.

Horel, J. (1984). Complex principal component analysis: Theory and examples.Journal of Climate and Applied Meteorology, vol. 23. pp. 1660–1673. DOI: https://doi.org/10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2

Holmes, R. and Lu, L. (2015). Introduction: Overview of the global iron oreindustry. Iron Ore. Elsevier. DOI: https://doi.org/10.1016/B978-1-78242-156-6.00001-0

Hung, L.Q.; Batelaan, O.; De Smedt, F(2005).Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, Bruges, Belgium, 19–22 September; Volume 5983, pp. 182–193. DOI: https://doi.org/10.1117/12.627699

Ibrahim, I.H (2013). Impact of Structural Lineaments on Mineralized Occurrences in North Abu Rusheid-Sikait Area, South Eastern Desert, Egypt. In Proceedings of the 5th Tunisian Days of Applied Geology JTGA 2013, Hammamet, Tunisia, 17–20 May; pp. 227–251.

Immaculate, N.-F.M.; Tende, A.W.; Fouateu, Y.R.; Marc, A.F.Q(2020). Remote sensing for geological investigation of Mayo Kila and environs, north west region of Cameroon. Am. J. Earth Sci, 7, 1–12.

Jeje L.K (1983). Aspects of geomorphology of Nigeria.Heinemann educational books.

Johnson, J.R., Bell III, J.F., Bender, S., Blaney, D., Cloutis, E., Ehlmann, B.,Fraeman, A., Gasnault, O., Kinch, K., and Le Mouelic, S. (2016). Constraintson iron sulfate and iron oxide mineralogy from ChemCam visible/nearinfraredreflectance spectroscopy of Mt. Sharp basal units, Gale Crater,Mars. American Mineralogist, vol. 101. pp. 1501–1514. DOI: https://doi.org/10.2138/am-2016-5553

Jolliffe, I.T. (2002). Principal component analysis and factor analysis.PrincipalComponent Analysis. Springer. pp. 150–166.

Kamgang, P, Njonfang, E, Nono, A, Dedzo M. G. &Tchuoa, F. M.(2010). Petrogenesis of silicic magma system: Geochemical evidence from Bamenda Mountains, NW Cameroon, Cameroon Volcanic Line”, J. Afr. Earth Sci. 58 285.https://doi.org/10.1016/j.jafrearsci.2010.03.008 DOI: https://doi.org/10.1016/j.jafrearsci.2010.03.008

Kaiser, P.K., Henning, J.G., Cotesta, L., and Dasys, A. (2002).Innovations in mine planning and design utilizing collaborative immersive virtual reality (CIRV).Proceedings of the 104th CIM Annual General Meeting. CIM, Montreal.

Kotnise, G. and Chennabasappa, S. (2015). Application of remote sensing techniques in identification of lithological rock units in southern extensionof Kolar Schist Belt from Chigargunta, Chittoor District, Andhra Pradesh toMaharajagadai, Krishnagiri District, Tamil Nadu.International Journal ofInnovative Science, Engineering Technology, vol. 2, no. 11.

Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, P.J. and Goetz, A.F.H. (1993) The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, vol. 44, p. 145-163. DOI: https://doi.org/10.1016/0034-4257(93)90013-N

Published
2023-10-31
How to Cite
Andarawus Y., Likkason O. K., Sadiq M. A., Ali S., Shekwonyadu I., Abubakar A., AbubakarA., Balogun F. O., Musa N., & Aliyu IbrahimA. (2023). INTEGRATING REMOTE SENSING DATA WITH HYDROTHERMAL ALTERATION MAPPING AND GEOCHEMICAL CHARACTERISTICS OF PRECAMBRIAN ROCKS ACROSS MAMBILLA PLATEAU, NORTHEASTERN, NIGERIA. FUDMA JOURNAL OF SCIENCES, 7(5), 328 - 347. https://doi.org/10.33003/fjs-2023-0705-1978

Most read articles by the same author(s)