SOLID STATE TRANSFORMER (SST) AND THE CHALLENGES OF THE FUTURE GRID

  • Nasiru B. Kadandani
  • Sahalu Hassan
  • Isiyaku Abubakar
Keywords: Solid State Transformer, Line Frequency Transformer, Flexible Alternating Current Transmission System, Static Synchronous Compensator, Grid

Abstract

Power flow management in both transmission and distribution grid networks is continuously being challenged by increased integration of distributed generations that are stochastic and intermittent in nature. This paper investigates the anticipated roles or functionalities required from solid state transformer (SST) to enable it address the challenges faced by the grid network. The SST is a power electronics based transformer build with flexibilities and intelligence required for performing ancillary services to the grid. The paper shows that, with the aid of SST, smooth integration of renewable energy sources and other functionalities such as power factor correction, reactive power compensation, harmonics mitigation, fault ride through and or fault isolation can be achieved in the future grid.

References

Das, D., & Kumar, C. (2017). Operation and Control of Smart Transformer Based Distribution Grid in a Microgrid System. Proceedings of the 2017 National Power Electronics Conference (NPEC), Pune, 135-140. DOI: https://doi.org/10.1109/NPEC.2017.8310448

Dong, D., Agamy, M., Bebic, J. Z., Chen, Q., & Mandrusiak, G. (2019). A Modular SiC High-Frequency Solid-State Transformer for Medium-Voltage Applications: Design, Implementation, and Testing. in IEEE Journal of Emerging and Selected Topics in Power Electronics, 7, No. 2, 768-778. doi:10.1109/JESTPE.2019.2896046 DOI: https://doi.org/10.1109/JESTPE.2019.2896046

Dujic, D., Zhao, C., Mester, A., Steinke, J. K., Weiss, M., Schmid, S. L., Stefanutti, P. (2013). Power Electronic Traction Transformer: Low Voltage Prototype. IEEE Transactions on Power Electronics, 28(12), 5522–5534. DOI: https://doi.org/10.1109/TPEL.2013.2248756

Eshkevari, A. L., Mosallanejad, A., & Sepasian, M. (2020). In-depth Study of the Application of Solid-State Transformer in Design of High-Power Electric Vehicle Charging Stations. IET Electrical Systems in Transportation (10, issue 3), 310-319. DOI: https://doi.org/10.1049/iet-est.2019.0106

Foureaux, N. C., Adolpho, L., Silva, S. M., Brito, J. A. d. S., & Cardoso Filho, B. d. J. (2014). Application of Solid State Transformers in Utility Scale Solar Power Plants. Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 3695-3700. doi:10.1109/PVSC.2014.6924909 DOI: https://doi.org/10.1109/PVSC.2014.6924909

Gao, R., Husain, I., Wang, F., & Huang, A. Q. (2015). Solid-State Transformer Interfaced PMSG Wind Energy Conversion System. Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 1310-1317. DOI: https://doi.org/10.1109/APEC.2015.7104517

Gao, R., Husain, I., & Huang, A. Q. (2016). An Autonomous Power Management Strategy Based on DC Bus Signalling for Solid-State Transformer Interfaced PMSG Wind Energy Conversion System. Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 3383-3388. DOI: https://doi.org/10.1109/APEC.2016.7468353

Gao, R., She, X., Husain, I., & Huang, A. Q. (2017). Solid-State-Transformer-Interfaced Permanent Magnet Wind Turbine Distributed Generation System with Power Management Functions. IEEE Transactions on Industry Applications, 53(4), 3849-3861. DOI: https://doi.org/10.1109/TIA.2017.2679679

Hambridge, S., Huang, A.Q., & Yu, R. (2015). Solid State Transformer (SST) as an Energy Router: Economic Dispatch Based Energy Routing Strategy. Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), 2355-2360. DOI: https://doi.org/10.1109/ECCE.2015.7309991

Hannan, M. A., Ker, P. J., Lipu, M. S. H., Choi, Z. H., AbdRahman, M. S., Muttaqi, K. M., & Blaabjerg, F. (2020). State of the Art of Solid-State Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements. IEEE Access, 8, 19113-19132. DOI: https://doi.org/10.1109/ACCESS.2020.2967345

Huang, A. Q. (2016). Medium-Voltage Solid-State Transformer: Technology for a Smarter and Resilient Grid. in IEEE Industrial Electronics Magazine, 10, No. 3, 29-42. doi:10.1109/MIE.2016.2589061 DOI: https://doi.org/10.1109/MIE.2016.2589061

Huber, J. E., & Kolar, J. W. (2019). Applicability of Solid-State Transformers in Today’s and Future Distribution Grids. in IEEE Transactions on Smart Grid, 10, No. 1, 317-326. doi:10.1109/TSG.2017.2738610 DOI: https://doi.org/10.1109/TSG.2017.2738610

Kadandani, N. B., & Abubakar, I. (2023). On Exploring the Power Quality Enhancement Capability and Other Ancillary Functionalities of Solid State Transformer Application in the Distribution System. Bayero Journal of Engineering and Technology (BJET), 18, No. 2, 28 – 39.

Kadandani, N. B., Dahidah, M., & Ethni, S. (2021a). An Overview of the Role of Solid State Transformer in Grid Connected Wind Farms. Proceedings of the 2021 IEEE 12th International Renewable Energy Congress (IREC2021), Hammamet, Tunisia, 1 - 6. doi:10.1109/IREC52758.2021.9624851 DOI: https://doi.org/10.1109/IREC52758.2021.9624851

Kadandani, N. B., Dahidah, M., & Ethni, S. (2021b). An Overview of the Role of Solid State Transformer in Smart Grid. Proceedings of the 2021 IEEE 12th International Renewable Energy Congress (IREC2021), Hammamet, Tunisia, 1 - 6. doi:10.1109/IREC52758.2021.9624767 DOI: https://doi.org/10.1109/IREC52758.2021.9624767

Kadandani, N. B., Dahidah, M., Ethni, S., & Yu, J. (2019). Solid State Transformer: An Overview of Circuit Configurations and Applications. In the Proceedings of the 15th IET International Conference on AC and DC Power Transmission (ACDC 2019), Coventry, UK, 1-6. DOI: https://doi.org/10.1049/cp.2019.0096

Kadandani, N. B., & Maiwada, Y. A. (2015a). An Overview of FACTS Controllers for Power Quality Improvement. The International Journal Of Engineering And Science (IJES), 4(9), 9-17.

Kadandani, N. B., & Maiwada, Y. A. (2015b). Simulation of a Static Synchronous Compensator (STATCOM) for Voltage Profile Improvement. IISTE Innovative System Design and Engineering, 6, No 7, 1-8. Retrieved from http://www.iiste.org/Journals/index.php/ISDE/article/view/23922/24493

Lai, J.S., Mansoor, A.M.A., and Goodman F. (2005). Multilevel Intelligent Universal Transformer for Medium Voltage Application. Proceedings of IEEE Industrial Appliances Conference, 1893–1899.

Liu, B., Zha, Y., Zhang, T., & Chen, S. (2016). Solid State Transformer Application to Grid Connected Photovoltaic Inverters. Proceedings of the 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), 248-251. doi:10.1109/ICSGCE.2016.7876063 DOI: https://doi.org/10.1109/ICSGCE.2016.7876063

Londero, R. P., Mello, A. P. C. d., & Silva, G. S. (2019). Comparison Between Conventional and Solid State Transformers in Smart Distribution Grids. Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 1 - 6. doi:10.1109/ISGT-LA.2019.8895327 DOI: https://doi.org/10.1109/ISGT-LA.2019.8895327

McMurray, W. (1971). The Thyristor Electronic Transformer: A Power Converter Using a High-Frequency Link. IEEE Trans. Ind. Gen. Appl., IGA-7, no. 4, 451–457. DOI: https://doi.org/10.1109/TIGA.1971.4181326

Montoya, R. J. G., Mallela, A., & Balda, J. C. (2015). An Evaluation of Selected Solid-State Transformer Topologies for Electric Distribution Systems. in the Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 1022-1029. doi:10.1109/APEC.2015.7104474 DOI: https://doi.org/10.1109/APEC.2015.7104474

Nair, A. C., & Fernandes, B. G. (2021). Solid-State Transformer Based Fast Charging Station for Various Categories of Electric Vehicles With Batteries of Vastly Different Ratings. IEEE Transactions on Industrial Electronics, 68, No. 11, 10400 - 10411. DOI: https://doi.org/10.1109/TIE.2020.3038091

Pool-Mazun, E. I., Sandoval, J. J., Enjeti, P. N., & Pitel, I. J. (2020). An Integrated Solid-State Transformer With High-Frequency Isolation for EV Fast-Charging Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1, No. 1, 46 - 56. DOI: https://doi.org/10.1109/JESTIE.2020.3003355

Qu, Z., Yao, Y., Wang, Y., Zhang, C., Chong, Z., & Abu-Siada, A. (2019). A Novel Unbalance Compensation Method for Distribution Solid-State Transformer Based on Reduced Order Generalized Integrator. IEEE Access, 7, 108593–108603. DOI: https://doi.org/10.1109/ACCESS.2019.2933414

Rehman, A., & Ashraf, M. (2019). Design and Analysis of PWM Inverter for 100 KVA Solid State Transformer in a Distribution System. IEEE Access, 7, 140152–140168. DOI: https://doi.org/10.1109/ACCESS.2019.2942422

Ronanki, D., & Williamson, S. S. (2018). Topological Overview on Solid-state Transformer Traction Technology in High-speed Trains. 2018 IEEE Transportation Electrification Conference and Exposition (ITEC), 32-37. doi:10.1109/ITEC.2018.8450135 DOI: https://doi.org/10.1109/ITEC.2018.8450135

She, X., & Huang, A. (2013). Solid State Transformer in the Future Smart Electrical System. in the Proceedings of the 2013 IEEE Power & Energy Society General Meeting, 1-5. doi:10.1109/PESMG.2013.6672768 DOI: https://doi.org/10.1109/PESMG.2013.6672768

She, X., Huang, A. Q., & Burgos, R. (2013). Review of Solid-State Transformer Technologies and their Application in Power Distribution Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1, No. 3, 186-198. DOI: https://doi.org/10.1109/JESTPE.2013.2277917

She, X., Wang, F., Burgos, R., & Huang, A. Q. (2012). Solid State Transformer Interfaced Wind Energy System with Integrated Active Power Transfer, Reactive Power Compensation and Voltage Conversion Functions. Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), 3140-3147. DOI: https://doi.org/10.1109/ECCE.2012.6342508

She, X., Yu, X., Wang, F., & Huang, A. Q. (2014). Design and Demonstration of a 3.6-kV–120-V/10-kVA Solid-State Transformer for Smart Grid Application. in IEEE Transactions on Power Electronics, 29, no. 8, 3982-3996. doi:10.1109/TPEL.2013.2293471 DOI: https://doi.org/10.1109/TPEL.2013.2293471

Steiner, M., & Reinold, H. (2007). Medium frequency topology in railway applications. 12th Eur. Power Electron. Appl. Conf. (EPE), Aalborg, Denmark, 1-10. DOI: https://doi.org/10.1109/EPE.2007.4417570

Sun, Q., Li, Y., Ma, D., Zhang, Y., & Qin, D. (2022). Model Predictive Direct Power Control of Three-Port Solid-State Transformer for Hybrid AC/DC Zonal Microgrid Applications. EEE Transactions on Power Delivery, 7, no. 1, 528-538. doi:10.1109/TPWRD.2021.3064418 DOI: https://doi.org/10.1109/TPWRD.2021.3064418

Tahir, Y., Khan, I., Rahman, S., Nadem, M. F., Iqbal, A., Xu, Y., & Rafi, M. (2021). A State-of-the-Art Review on Topologies and Control Techniques of Solid-State Transformers for Electric Vehicle Extreme Fast Charging. IET Power Electronics, 1-17. doi: 10.1049/pel2.12141 DOI: https://doi.org/10.1049/pel2.12141

Wang, J., Huang, A. Q., Sung, W., Liu, Y., & Baliga, B. J. (2009). Smart Grid Technologies. IEEE Industial Electronics Magazine, 3, No. 2, 16–23. DOI: https://doi.org/10.1109/MIE.2009.932583

Wang, L., Zhang, D., Wang, Y., Wu, B., & Athab, H. S. (2016). Power and Voltage Balance Control of a Novel Three-Phase Solid State Transformer Using Multilevel Cascaded H-Bridge Inverters for Microgrid Applications. IEEE Transaction on Power Electronics, 31(4), 3289-3301. DOI: https://doi.org/10.1109/TPEL.2015.2450756

Zhao, C. et al, (2014). Power Electronic Traction Transformer—Medium Voltage Prototype. IEEE Transactions on Industrial Electronics, 61, No. 7, 3257–3268. DOI: https://doi.org/10.1109/TIE.2013.2278960

Zheng, L. et al. (2021). SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids. in IEEE Transactions on Power Electronics, 36, No. 10, 1326-11343. doi: 10.1109/TPEL.2021.3066908 DOI: https://doi.org/10.1109/TPEL.2021.3066908

Published
2023-09-28
How to Cite
Kadandani N. B., Hassan S., & Abubakar I. (2023). SOLID STATE TRANSFORMER (SST) AND THE CHALLENGES OF THE FUTURE GRID. FUDMA JOURNAL OF SCIENCES, 7(3), 330 - 335. https://doi.org/10.33003/fjs-2023-0703-1965