PERFORMANCE EVALUATION OF THE IMPACTS OF METROLOGICAL PARAMETERS ON CRYSTALLINE AND AMORPHOUS MODULES AT MINNA, NIGERIA

  • Ahmed Mohammed
  • Abubakar Adamu
  • Ezenwora Joel Aghaegbunam
  • Moses Ukiri
Keywords: Electrical and metrological parameters, performance ratio, Photovoltaic module

Abstract

Photovoltaic (PV) module performance is rated under standard test conditions (STC) i.e. irradiance of 1000 W/m², solar spectrum of Air Mass 1.5 and module temperature at 25°C. Manufacturers of photovoltaic modules typically provide the ratings at only one operating condition i.e. STC. However, PV module operates over a large range of environmental conditions at the field. So the manufacturer’s information is not sufficient to determine the actual performance of the module at field. Optimization of solar energy is affected by so many factors ranging from conversion efficiency of PV module to local metrological conditions. The research work therefore, evaluates the performance of three PV technologies using performance ratio. Metrological parameters such as solar radiation intensity, wind speed, relative humidity, and air temperature were measured simultaneously with the output electrical parameters from the three modules exposed to field test using metrological sensors and a CR1000 software-based data logging system with computer interface attached to the modules. Four years consecutives metrological and modules output data’s were collected from the modules and analyzed. The findings indicates that metrological parameters fluctuate non-linear with the modules output, under this conditions the trends as measured by the output power revealed that polycrystalline module has a better performance than amorphous module followed by mono-crystalline module in this experiment. The paper recommends the need to mitigate substandard modules entering our market through appropriate monitoring agencies and the setting of solar module laboratory for locally production of solar modules that would captures our local metrological parameters towards greater efficiency.

References

Dubey, S., Sarvaiya, J.N., & Seshadri, B., (2013). Temperature dependent photovoltaic (PV efficiency and its effect on PV production in the world –A review, Energy Proc.;33:Pp311-321. DOI: https://doi.org/10.1016/j.egypro.2013.05.072

Development and Climate Change. Dev. Clim. Chang.; 2008. doi:10.1596/28200 DOI: https://doi.org/10.1596/28200

Ebhota, W.S., & Tabakov, P.Y., (2023). Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance, Ain Shams Engineering Journal 14, 101984 DOI: https://doi.org/10.1016/j.asej.2022.101984

ESI Africa edition Issue 4, (2016). https://www.esi-africa.com/issues/esi-africa-edition-4-2016/

Ezenwora, J.A., Oyedun, O.D., Igwe, K.C., Eichie, J.O., & Moses A.S., (2011). Solar Irradiance Variation with Humidity, Temperature and Wind Speed in Minna, Nigeria, Nigeria Journal of space research

Faranda, R., & Leva, S., (2008). Energy comparison of MPPT techniques for PV Systems, WSEAS Transactions On Power Systems, Vol.3, No.6, Pp. 446-455.

Feroz, Shaik, Syam Sundar Lingala & Punnaiah, Veeraboina (2023). Effect of various parameters on the performance of solar PV power plant: a review and the experimental study DOI: https://doi.org/10.1186/s40807-023-00076-x

Fouuad, M.M., Shihata, L.A., & Morgan, ESI., ( 2017). An integrated review of factors influencing the performance of photovoltaic panels. Renew Sustain Energy Rev.80:1499-1511. doi:10.1016/j. rser.2017.05.141, DOI: https://doi.org/10.1016/j.rser.2017.05.141

Griffith, J.S., Rathod, M.S., & Paslaski, j., (1981). Some tests of mod Temps_PVSC, pdf. In proceedings of the 15th IEEE photovoltaic specialists conference, Pp. 822-830

Hill, R., (1999). Prospects for Photovoltaic, Energy World 208, Pp8-11

Khaled, Hasan, Sumaiya, Binty, Yousuf, Mohammad, Shahed, Hasan, Khan Tushar, Barun K. Das, Pronob Das, Md., & Saiful Islam, (2021). Effects of different environmental and operational factors on the PV performance: A comprehensive review, DOI: 10.1002/ese3.1043 DOI: https://doi.org/10.1002/ese3.1043

Liu L., (2009). Comment on ‘recent progress in thermodynamics of radiation-exergy of radiation, effective temperature of photon and entropy constant of photon’. Sci China, Ser E Technol Sci. 52(6):Pp1809-1810. doi:10.1007/s1143 1-009-0086-4 DOI: https://doi.org/10.1007/s11431-009-0086-4

Martinot, E., Mastny L., Rosbotham L., Suding, P., & Lempp P., (2009). Renewable Global Status. REN21. http://www.ren21.net/status-of-renewables/global-status-report

Mekhilef, S., Saidur, R., & Kamalisarvestani M., (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev. Vol.16(5), Pp. 2920-2925. doi:10.1016/j. rser.2012.02.012 DOI: https://doi.org/10.1016/j.rser.2012.02.012

Mondol, J.D., Yohanis, Y.G., & Norton B., (2007). The Impact of Array Inclination and Orientation on the Performance of a Grid-Connected Photovoltaic System. Renew. Energy, Vol. 32, Pp118–140. DOI: https://doi.org/10.1016/j.renene.2006.05.006

Narendra, Kumar, M., Saini, H.S., Anjaneyulu, K.S.R., & Kuldip Singh, (2014). Solar power analysis based on light intensity, The International Journal of Engineering and Science (IJES)

Olayinka, A.S., Ukhurebor, K.E., Ogunmola, K., & Aruewamedo, K., (2018). Effects of Meteorological Variables on the Efficiency of Solar Panel, Journal of the Nigerian Association of Mathematical Physics, Vol. 4.

Roney, J.M., (2012).World solar power topped 100,000 Megawatts http://www.treehugger.com/renewable-energy/world-solar-power-topped-100000-megawatts-2012.html

Shah, ASBM, Yokoyama, H., & Kakimoto N., (2015). High-precision forecasting model of solar irradiance based on grid point value data analysis for an efficient photovoltaic system. IEEE Trans Sustain Energy; 6(2):474-481. doi:10.1109/TSTE.2014.2383398 DOI: https://doi.org/10.1109/TSTE.2014.2383398

Skoplaki, E., Boudouvis, A.G., & Palyvos, J.A., (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells 92(1), Pp1393–1402 DOI: https://doi.org/10.1016/j.solmat.2008.05.016

Tanima, Bhattacharya, Ajoy, K., Chakraborty, & Kaushik Pal., (2014). Effects of Ambient Temperature and Wind Speed on Performance of Monocrystalline Solar Photovoltaic Module in Tripura, India, Journal of Solar Energy, Volume 2014, Article ID 817078, Pp5 http://dx.doi.org/10.1155/2014/817078 DOI: https://doi.org/10.1155/2014/817078

Twidel, J., & Weir, T. (2015) Renewable Energy Resourcecs. Routledge, London and New York.

Wang, H., Ang, B.W., & Su, B., (2008). A multi- region structural decompo-sition analysis of global CO2 emission intensity. Ecol Econ. 2017;142:163- 176. doi:10.1016/j.ecole con..06.0232.

Wang, H., Ang, B.W., & Su, B., (2017). A multi- region structural decompo-sition analysis of global CO2emission intensity. Ecol Econ. 2017;142:163- 176. doi:10.1016/j.ecole con. 06.0232. DOI: https://doi.org/10.1016/j.ecolecon.2017.06.023

Wang, F., Xuan, Z., Zhen, Z., (2020). A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model. Energy Convers Manag. doi:10.1016/j.encon man.2020.113075 DOI: https://doi.org/10.1016/j.enconman.2020.113075

Xueyan, Li, Theodore, Putra, Prawiradiraja, Dilip, Battul, (2013). The Role of Humidity in Energy Output of Solar Panels in Coastal Regions, GSTF International Journal of Engineering Technology (JET) Vol.2 No.1 DOI: https://doi.org/10.5176/2251-3701_2.1.35

Zouine, Meryer, Mohamed, Akhsassi, Nouredine, Erraissi, Noura, Aarich, Bennouna, M., & Outzouhit, (2018). Mathematical models calculating photovoltaic module temperature using weather data: Experimental study, Note in lecture in Electrical Engineering, DOI:10.1007978-981-13-1405-72

Published
2023-08-30
How to Cite
Mohammed A., Adamu A., Aghaegbunam E. J., & Ukiri M. (2023). PERFORMANCE EVALUATION OF THE IMPACTS OF METROLOGICAL PARAMETERS ON CRYSTALLINE AND AMORPHOUS MODULES AT MINNA, NIGERIA. FUDMA JOURNAL OF SCIENCES, 7(4), 36 - 46. https://doi.org/10.33003/fjs-2023-0704-1928