ELUCIDATING THE FUNCTIONAL ANNOTATION AND EVOLUTIONARY RELATIONSHIPS OF CYTOCHROME P450 GENES IN XYLARIA SP. FL1777 USING IN-SILICO APPROACHES

  • Wadzani Palnam Dauda
  • Elkanah Glen
  • Peter Abraham
  • Charles Oluwaseun Adetunji
  • Daji Morumda
  • Shittu Emmanuel Abraham
  • Grace Peter Wabba
  • Israel Ogra Ogwuche
Keywords: Bioremediation, Cytochrome P450, Genome, Pollutant, Xenobiotic, Xylaria

Abstract

The higher level of human activities has resulted in several forms of anthropogenic activities with diverse adverse effects on human and environmental sustainability. The traditional means of handling xenobiotics pollutants are no longer sustainable due to the high cost involved, complex procedures and demanding regulatory requirements. Bioremediation using fungi (mycoremediation) is now recognized as an efficient and workable biotechnological tool that effectively employ fungal enzymes via the process of absorption and mineralization to get rid of contaminants. Cytochrome P450s (CYPs) are diverse and unique gene families with varying degree of complexities in the eukaryotes. CYPs mainly utilize molecular oxygen to modify substrate conformation, thereby establishing a mechanism of action for achieving their important physiological and ecological processes. Xylariaceae belongs to the main and highly diversified families of filamentous Ascomycota; it plays an important role as saprotrophs of wood, soil, litter and dung. Genome-wide annotation analysis was carried out to explore the possibility of utilizing the CYPs of Xylaria sp. for achieving mycoremediation. The evolutionary analysis has divided the 214 Xylaria CYPs into fifteen (15) clades. The CYPs were categorized into forty-seven (47 clans) and eighty-six (86) families. MEME suite identified ten (10) conserved motifs. The gene structural investigation reveals high dynamic intron-exon organization. Most of the CYPs have been predicted to be localized in the endoplasmic reticulum. This study therefore calls for deeper exploration of the Xylaria sp and its high potential for application in bioremediation for the degradation of environmental contaminants.

References

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37(Web Server): 202-8. DOI: https://doi.org/10.1093/nar/gkp335

Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., ... & Parajuli, N. (2021). "Microbial Enzymes Used in Bioremediation", Journal of Chemistry. https://doi.org/10.1155/2021/8849512. DOI: https://doi.org/10.1155/2021/8849512

Bo H., Jinpu J., An-Yuan G., He Z, Jingchu L. and Ge G. (2015). GSDS 2.0: an upgraded gene features visualization server. Bioinformatics, 31(8):1296- 1297. DOI: https://doi.org/10.1093/bioinformatics/btu817

Budddolla, V., Bandi R., Avilala J., Arthala P.K. and Golla N. (2014). Fungal Laccases and the Application in Bioremediation. Enzyme Research 201:1-21 DOI: https://doi.org/10.1155/2014/163242

Chadha S., Mahetre S.T., Bansal R., Kuo A., Aerts A., Grigoriev I.V., Druzhinina S.I., Mukherjee PK. (2018). Genome-wide analysis of cytochrome P450 of Trichoderma spp.: annotation and evolutionary relationships. Fungal Biol Biotechnol 5(12): 11-12 DOI: https://doi.org/10.1186/s40694-018-0056-3

Chen W., Lee M., Jefcoate C., Kim S, Chen F., Yu J.H., (2014). Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biol. Evol. 6(7):1620-1634 DOI: https://doi.org/10.1093/gbe/evu132

Cheng, X., Xiao, X., & Chou, K. C. (2018). pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 110 (1), 50-58. DOI: https://doi.org/10.1016/j.ygeno.2017.08.005

Dauda WP, Peter GW, Abraham P, Adetunji CO, Glen E, Daji M, Ogra IO, Shittu EA., Azameti MK, Ghazanfar S, Osemwegie OO, Olaniyan OT, and Anyakudo MMC (2022c). Bioinformatics Based Structural Analysis of Cytochrome P450 genes in Candida tropicalis. Nigerian Journal of Parasitology 43(2): 379-390. DOI: https://doi.org/10.4314/njpar.v43i2.17

Dauda WP, Abraham P, Fasogbon IV, Adetunji CO, Banwo OO, Kashina BD, Alegbejo MD (2021). Cassava mosaic virus in Africa: Functional analysis of virus coat proteins based on evolutionary processes and protein structure. Gene Reports, p.101239. DOI: https://doi.org/10.1016/j.genrep.2021.101239

Dauda WP, Abraham P, Glen E, Adetunji CO, Ghazanfar S, Ali S, Al-Zahrani M, Azameti MK, Alao SEL, Zarafi AB, et al. (2022a). Robust Profiling of Cytochrome P450s (P450ome) in Notable Aspergillus spp. Life.12, 451.https://doi.org/10.3390/life12030451. DOI: https://doi.org/10.3390/life12030451

Dauda WP, Morumda D, Abraham P, Adetunji CO, Ghazanfar S, Glen E, Abraham SE, Peter GW, Ogra IO, Ifeanyi UJ, Musa H, Azameti MK, Paray BA, Gulnaz A (2022b). Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. J. Fungi (Basel) 8 (4): 324. doi: 10.3390/jof8040324. DOI: https://doi.org/10.3390/jof8040324

Dauda, W.P., Alao, S.E.L., Zarafi, A.B. and Alabi, O., 2018. First Report of die-back disease of onion (Allium cepa L.) induced by Fusarium equiseti (Mart) Sacc in Nigeria. Inter J Plant Soil Sci, 21, pp.1-8. DOI: https://doi.org/10.9734/IJPSS/2018/38339

Deng J.X., Carbone I., Dean R.A. (2007). The Evolutionary History of Cytochrome P450 Genes in Four Filamentous Ascomycetes. BMC Evol Biol. 7:30 DOI: https://doi.org/10.1186/1471-2148-7-30

Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Gao, S., Zeng, R., Xu, L., Song, Z., Gao, P., & Dai, F. (2020). Genome sequence and spore germination-associated transcriptome analysis of Corynespora cassiicola from cucumber. BMC microbiology, 20 (1), 1-20. DOI: https://doi.org/10.1186/s12866-020-01873-w

Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). Fungi in bioremediation of soil organic pollutants. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano technology (pp. 381-405). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-821925-6.00017-4

Jiu, S., Xu, Y., Wang, J., Wang, L., Liu, X., Sun, W., ... & Zhang, C. (2020). The Cytochrome P450 Monooxygenase Inventory of Grapevine (Vitis vinifera L.): Genome-Wide Identification, Evolutionary Characterization and Expression Analysis. Frontiers in genetics, 11, 44. DOI: https://doi.org/10.3389/fgene.2020.00044

Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism—from biochemistry to genomics. Nature Reviews Microbiology, 3(12), 937-947. DOI: https://doi.org/10.1038/nrmicro1286

Kelly D.E., Krasevec N., Mullins J., Nelson D.R. (2009). The Cypone (Cytochrome P450 complement) of Aspergillus nidulans. Fungal Genetics and Biology 46:53-61. DOI: https://doi.org/10.1016/j.fgb.2008.08.010

Kevin, D. H., Jianchu X., Sylvie, R., Rajesh, J., Saisamorn, L., Allen G. T. N., Pranami, D.A.… & Marc, S. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97:1–136 DOI: https://doi.org/10.1007/s13225-019-00430-9

Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549. DOI: https://doi.org/10.1093/molbev/msy096

Kuo-Chen C. and Hong-Bin S. (2010). Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms, Natural Science, 2: 1090-1103. DOI: https://doi.org/10.4236/ns.2010.210136

Li Z., Jlang Y., Guengerich F.P., Ma L., Shengying L. and Zhang W. (2020). Engineering cytochrome P450 enzymes systems for biomedical and biotechnological applications. DOI: https://doi.org/10.1016/S0021-9258(17)49939-X

Li, F., Di, L., Liu, Y., Xiao, Q., Zhang, X., Ma, F., & Yu, H. (2019). Carbaryl biodegradation by Xylaria sp. BNL1 and its metabolic pathway. Ecotoxicology and environmental safety, 167, 331-337. DOI: https://doi.org/10.1016/j.ecoenv.2018.10.051

Matowane, R. G., Wieteska, L., Bamal, H. D., Kgosiemang, I. K. R., Van Wyk, M., Manume, N. A., ... & Syed, K. (2018). In silico analysis of cytochrome P450 monooxygenases in chronic granulomatous infectious fungus Sporothrix schenckii: Special focus on CYP51. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1866(1), 166-177. DOI: https://doi.org/10.1016/j.bbapap.2017.10.003

Mockali V., Park J., Fedorova N.D., Park B., Choi J., Lee Y.H., and Kang S., (2012). Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13,525 DOI: https://doi.org/10.1186/1471-2164-13-525

Nelson D.R. (2006). Cytochrome P450 nomenclature, 2004. Methods in Molecular Biology (Clifton, N.J.) 320:1-10 DOI: https://doi.org/10.1385/1-59259-998-2:1

Nelson, D. R., Goldstone, J. V., & Stegeman, J. J. (2013). The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome 450s. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 368(1612), 20120474. DOI: https://doi.org/10.1098/rstb.2012.0474

Published
2023-08-30
How to Cite
Dauda W. P., Glen E., Abraham P., Adetunji C. O., Morumda D., Abraham S. E., Wabba G. P., & Ogwuche I. O. (2023). ELUCIDATING THE FUNCTIONAL ANNOTATION AND EVOLUTIONARY RELATIONSHIPS OF CYTOCHROME P450 GENES IN XYLARIA SP. FL1777 USING IN-SILICO APPROACHES. FUDMA JOURNAL OF SCIENCES, 7(4), 246 - 264. https://doi.org/10.33003/fjs-2023-0704-1922

Most read articles by the same author(s)