PARAMETERS AFFECTING QUALITATIVE AND EFFICIENT ELECTRODEPOSITION OF METALS IN AN ELECTROLYTIC CELL: A REVIEW

  • Matthew Oluwole Arowolo Department of Mechatronics Engineering, Federal University, Oye - Ekiti, Ekiti State.
  • A. A. Adekunle
  • Olusegun, A. Odejobi
Keywords: Electroplating, Efficient Electrodeposition, Electrodes, Electrolyte, Operating Parameters

Abstract

Electroplating has been a useful practice in the laboratory and industry for a long time. Its usefulness is more profound in oil industries for corrosion prevention and control, automobile industry, jewelries and decoration. Today, the scope of electroplating has expanded considerably with many players exploring its advantages and optimizing its parameters for enhanced productivity. The paper presented a review of electroplating with the aim of making concise information available on its process parameters and its process optimization. The review was compiled from several major work which pertained to parameters affecting qualitative and efficient electrodeposition of metals in an electrolytic cell. Results gathered included actual effect of identified parameters and interplay of parameter on quality of electrodeposition and microstructure of deposited metal. Important recommendations were made to further enhance the practice of electrodeposition.

References

Agasti, A., Rai, D., Mallick, S., & Bhargava, P. (2014, December). Study of Optimization of Zn Salt Concentration in co-Electrodeposited Cu2ZnSnS4 (CZTS) Thin Films. 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems.

Andre A. P., & Maximiliano L.M. (2006). Electrodeposition. Encyclopedia of Chemical Processing, 821-832.

ASTMB374-06. (2019). Standard Terminology Relating to Electroplating. ASTM International, West Conshohocken, PA, 2019, www.astm.org.

Aygar, A. M., & Üstünışık, M. (2009, May). Investigation on the Factors that Affect the Amount of Metal Coated in an Electroplating Process. Retrieved February 8, 2020, from https://core.ac.uk/download/pdf/11725439.pdf

Barbato, S. R., Ponce, J. F., Jara, M. L., Cuevas, J. S., & Egana, R. A. (2008). Study of the Effect of Temperature on the Hardness, Grain Size, and Yield in Electrodeposition of Chromium on 1045 Steel. Journal Of The Chilean Chemical Society, 53(1), 1429-1432.

Begum, S. S., Tarlochan, F., & Sambasivam, K. (2013). Analyzing the Influence of Process Parameters on Anode Usage in Electroplating Process. Asian Journal of Applied Sciences, 6(1), 16-28.

Bhat, R. S., & Hegde, A. C. (2012). Electrodeposition of Cyclic Multilayer Zn-Co Films Using Square Current Pulses and Investigations on Their Corrosion Behaviors. Journal of minerals and materials characterization and engineering, 11(9), 896-903.

Bograchev, D. A., & Davydov, A. D. (2019). Effect of Applied Temperature Gradient on Instability of Template-Assisted Metal Electrodeposition. Electrochimica Acta- Elsevier, 1049-1054.

Celis, J. P., De Bonte, M., & Roos, J. (2017). Electroplating Technology. The International Journal of Surface Engineering and Coatings, 89-93.

Chandrasekar, M. S., & Pushpavanam, M. (2008). Pulse and Pulse Reverse Plating -Conceptual, Advantages and Applications. Electrochimica Acta, 53(8), 3313-3322.

Cvetković, V. S., Vukićević, N. M., Jovićević, N., Stevanović, J. S., & Jovićević, J. N. (2020). Aluminium Electrodeposition Under Novel Conditions from AlCl3–Urea Deep Eutectic Solvent at Room Temperature. Transactions of Nonferrous Metals Society of China, 30(3), 823-834.

Esmar, B., Leli, K., Assita, W. A., Widyaningrum, I., Iwan, S., & Prayitno, T. B. (2020). Effect of Temperature on Electrodeposited Nickel Nitride Composite Coatings. The 4th International Conference on Applied Physics and Materials Application.

Gamburga, Y., Groshevab, M., Biallozorc, S., & Hassc, M. (2002). The electrochemical deposition of nickel from electrolytes containing malonic acid. Surface and Coatings Technology, 150(2002), 95–100.

Garcia J.C., & Burleigh T.D. (2013). The Beginnings of Gold Electroplating. , 22(2), p.36. Electrochemical Society Interface, 22(2), 36.

Go´mez, E., Pellicer, E., & Valle´s, E. (2003). Influence of the bath composition and the pH on the induced cobalt/molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 556(2003), 137-145.

Güler, E. S. (2016). Effects of Electroplating Characteristics on the Coating Properties. In A. M. Mohamed, & T. D. Golden, Electrodeposition of Composite Materials (pp. 27-37). INTECH. doi:DOI: 10.5772/61745

Heong, C. Y., Haseeb, A. S., Yingxin, G., & Fang, L. S. (2012). Effects of Sn Concentration and Current Density on Sn-Bi Electrodeposition in Additive Free Plating Bath. 4th Asia Symposium on Quality Electronic Design, 286-290.

Khedekar, D., Gosavi, V., Gogte, C., & Brahmankar, P. (2016, December). Optimization of Process Parameters of Nickel – Chromium Electroplating for Thickness Variation using Genetic Algorithm. International Conference on Communication and Signal Processing 2016, 41-47.

Kumar, A., & Clement, S. (2011). Optimum Selection and Ranking of Electroplating System Process Parameters: Taguchi-MADM Approach. International Journal of Applied Decision Science, 4(4), 341-361.

Kumar, S., Pande, S., & Verma, P. (2015). Factor Effecting Electro-Deposition Process. International Journal of Current Engineering and Technology Vol.5, No.2, 700-703.

Liu, Q., Min, J. H., Cho, J. U., & Kim, Y. K. (2005). The pH Dependence of Co–Cu Alloy Thin Films Fabricated on Amorphous Substrate by DC Electrodeposition. IEEE Transactions on Magnetics, 41(2), 930-932.

Lou, H. H., & Huang, Y. (2006). Electroplating. Encyclopedia of Chemical Processing, 839-848.

Mahapatro, A., & Suggu, S. K. (2018). Modeling and Simulation of Electrodeposition: Effect of Electrolyte Current Density and Conductivity on Electroplating Thickness. Advanced Material Science, 3(2), 1-9.

Mokabber, T., Rastegari, S., & Razavizadeh, H. (2013). Effect of Electroplating Parameters on Properties of Zn–Nano-TiO2 Composite Coatings. Surface Engineering, 29(1), 41-45.

Nia, P. M., Jenatabadi, H. S., Woi, P. M., & Abouzari-Lotf, E. (2019). The Optimization of Effective Parameters for Electrodeposition of Reduced Graphene Oxide through Taguchi Method to Evaluate the Charge Transfer. Measurement, 683-690.

Oniku, O. D., Qi, B., & Arnold, D. P. (2015). Effect of Current Density on Electroplated CoPt Thick Films. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 596-601.

Paunovic, M., & Schlesinger, M. (1998). Fundamentals of electrochemical deposition. New York.

Prasad, S., Marinho, F., & Santana, F. (2000). Control and Optimization of Baths for Electrodeposition of Co-Mo-B Amorphous Alloys. Brazilian Journal of Chemical Engineering, 17, 4-7.

Rashidi, A. M., & Amadeh, A. (2010). Effect of Electroplating Parameters on Microstructure of Nanocrystalline Nickel Coatings. Journal of Material Science Technology, 26(1), 82-86.

Sadiku-Agboola, O., Sadiku, E. R., Ojo, O. I., Akanji, O. L., & Biotidara, O. F. (2011). Influence of Operation Parameters on Metal Deposition in Bright Nickel-Plating Process. Portugaliae Electrochimica Acta,, 29(2), 91-100.

Si, C., Fei, Q., Tong, A., & Pei, C. (2016, May). Effect of Electroplating Parameter on the TSV -Cu Protrusion during Annealing and Thermal Cycling. IEEE 66th Electronic Components and Technology Conference (ECTC), 1599-1604.

Sui, X., Huang, Y., Han, T., & Zeng, X. (2017, April). Analysis on the Influential Factors of Cu2+ Electro-deposition. AIP Conference Proceedings. 1829, p. 020042. AIP Publishing LLC.

Tan, Y. J., & Lim, K. Y. (2003). Understanding and Improving the Uniformity of Electrodeposition. Journal of Surface and Coatings Technology, 167(2-3), 255-262.

Tang, J., Mao, S., Wang, H., Liu, R., & Ding, G. (2010, January). Effect of Additives on Mechanical Properties of Electroplating Nickel.IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 450-453.

Thomson T. (1813). On the Daltonian theory of definite proportions in chemical combinations. Annals of philosophy, 2, 32.

Trzaska, M., & Trzaska, Z. W. (2008). Control of Nano- and Micro-crystalline Copper Electrodeposits. American Control Conference, 2196-2201.

Tuaweri, T. J., Adigio, E. M., & Jombo, P. P. (2013). A Study of Process Parameters for Zinc Electrodeposition from a Sulphate Bath. International Journal of Engineering Science Invention, 2(8), 17-24.

Wahab, H. A., Noordin, M. Y., Izman, S., & Kurniawan, D. (2013). Quantitative Analysis of Electroplated Nickel Coating on Hard Metal. The Scientific World Journal, 1-6.

Walsh, F. C., Wang, S., & Zhou, N. (2020). The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges. Current Opinion in Electrochemistry, 20, 8-19.

Wei Han. (2012, March 22). Electroplating/ Electrodeposition. ABC of Electrochemistry. Ohio, USA: Ohio University.

Wu, W., Eliaz, N., & Gileadi, E. (2014). The Effects of pH and Temperature on Electrodeposition of Re-Ir-Ni Coatings from Aqueous Solutions. Journal of The Electrochemical Society, 162(1), D20-D26.

Yin, T., Wu, R., Leng, Z., Du, G., Guo, X., Zhang, M., & Zhang, J. (2013). The Process of Electroplating with Cu on the Surface of Mg–Li Alloy. Surface and Coatings Technology, 225, 119-125.

Yu, J. K., Sun, H., Zhao, L. L., Wang, Y. H., Yu, M. Q., Luo, H. L., & Matsugi, K. (2017). Effects of Electrolyte Concentration and Current Density on the Properties of Electrodeposited NiFeW Alloy Coatings. Bulletin of Materials Science, 40(3), 577-582.

Zangari, G. (2018). Fundamentals of Electrodeposition. Elsevier inc.

Ziti, Z., Fakurol, R., & Yusairie, M. (2012). The influence of Deposition Temperature on the Electrodeposition of NiO Films on ITO-Glass Substrate. IEEE Symposium on Humanities, Science and Engineering Research, 531-535

Published
2020-07-09
How to Cite
ArowoloM. O., AdekunleA. A., & OdejobiO. A. (2020). PARAMETERS AFFECTING QUALITATIVE AND EFFICIENT ELECTRODEPOSITION OF METALS IN AN ELECTROLYTIC CELL: A REVIEW. FUDMA JOURNAL OF SCIENCES, 4(2), 584 - 589. https://doi.org/10.33003/fjs-2020-0402-190