IN VITRO SENSITIVITY PROFILES OF ENTERIC BACTERIA ASSOCIATED WITH DIARRHEIC PATIENTS WITHIN KATSINA METROPOLIS, KATSINA STATE, NIGERIA
DOI:
https://doi.org/10.33003/fjs-2020-0402-189Keywords:
Enteric bacteria, antibiotic sensitivity testing, antibiotic resistant bacteria, multi-drug resistant bacteria, diarrheic patientAbstract
Diarrheal disease is a leading cause of mortality and morbidity across the globe. However, there is little information on the prevalence and antimicrobial sensitivity patterns of microbes associated with diarrheic patients within Katsina Metropolis, Nigeria, hence, the need for this study. Forty (40) stool samples were collected from Federal Medical Center, Katsina, Katsina State, Nigeria. Isolation and identification of the bacteria from the stool samples were carried out using standard microbiological techniques. Antibiotics sensitivity testing was carried out on all the bacterial isolates using disk diffusion method. Seventeen (17) bacterial isolates were isolated from three different genera. These include: Escherichia coli (58.82%), Salmonella typhi (29.41%) and Shigella dysenteriae (11.77%). The results of antibiotics sensitivity test showed a high (100%) resistance to amoxicillin, 70.59% resistance to streptomycin, 41.18% resistance to nalixidic acid and least (17.65%) resistance to imipenem. Multi drug resistant Escherichia coli and Shigella species were also detected. The high level of antibiotic resistance among bacterial isolates obtained from stool samples of diarrheic patients is quite alarming and requires urgent public health attention. Hence, further studies are required for the molecular detection of the resistant genes in these bacteria.
References
References
Abu-Hussen, A.A.A. (2006). Synthesis and spectroscopic studies on ternary bis-Schiff-base complexes having oxygen and/or nitrogen donors, Journal of Coordination Chemistry, 59(2): 157-176.
Agwara, M. O., Ndifon, P. I., Ndosiri, N. B., Paboudam, A. G., Yufanyi, D. M. and Mohamadou, A. (2010). Synthesis, characterization and antimicrobial activities of Co(II), Cu(II) and Zn(II) mixed – Ligand complexes containing 1,10-phenanthroline and 2, 2’- bipyridine, Bulletin of the Chemical Society of Ethiopia, 24(3):383-389.
Alias, M.F and AbdulHassan, M. M. (2015). Synthesis and Characterization of Some Metal Complexes with their Sulfamethoxazoleand 4,4'-dimethyl-2,2'-bipyridyl and study Cytotoxic Effect on Hep-2 Cell Line, Baghdad Science Journal, 12(4): 740-751.
Anupama, B. and Kumari, C.G. ( 2013). Cobalt (II) complexes of ONO donor Schiff bases and N, N donor ligands: synthesis, characterization, antimicrobial and DNA binding study,
International Journal of Research in Chemistry and Environment, 3(2): 172-180.
Armani, V., Safari, N and Khavasi, H.R. (2007). Synthesis, characterization and crystal structure determination of iron(III) hetero-ligand complexes containing 2,2′-bipyridine, 5,5′-dimethyl-2,2′bipyridine and chloride, [Fe(bipy)Cl4][bipy•H] and [Fe(dmbipy)2Cl2][FeCl4], Polyhedron, 26(15): 4257-426.
Bamigboye, M.O., Obaleye, J.A and Abdulmolib, S. (2012). Synthesis, characterization and antimicrobial activity of some mixed sulfamethoxazole-cloxacillin metal drug complexes, International Journal of Chemistry, 22(2): 105-108.
Bencini, A and Lippolis, V. (2010). 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes, Coordination Chemistry Reviews, 254(17-18): 2096-2180.
Chaudhary, A., Bansal, N., Gajraj, A and Singh, R.V. (2003). Antifertility, Antibacterial, Antifungal and Percent Disease Incidence Aspects of Macrocyclic Complexes of Manganese (II), Journal of Inorganic Biochemistry, 96: 393-400.
Helio, G. B., Rosalia, A., Clarissa, P. F., Nilo, Z and Marcos, A. P. M. (2006). Recent advances in the chemistry of 1,10- phenanthrolines and their metal complex derivatives: synthesis and
promising applications in medicine, Technology and Catalysis,19:1-3.
Huovinen, P. (2001). Resistance to Trimethoprim-Sulfamethoxazole, Clinical Infectious Diseases, 32:1608–1614.
Imam H , Kumar B. and Shafayat M.D.(2011).Mixed Ligand Complexes of Transition Metal Chelates of 1- nitroso-2-naphthol and 8-hydroxyquinoline with Picolinic Acid and Quinaldinic acid, Oriental Journal of Chemistry, 27 (1): 287-291.
Janiak, C. (2000). A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands, Journal of Chemical Society Dalton Transactions,21: 3885-3896.
Joseyphus, R.S and Nair, M.S. (2008).Antibacterial and antifungal studies on some schiff base complexes of zinc (II), Mycobiology, 36(2):93-98.
Kaes, C., Katz, A and Hosseini, M.W. (2000). Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2, 2′-Bipyridine Units, Chemical Reviews, 100(10): 3553-3590
Kitagawa, S., Noro, S and Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers, Chemical Communications, 701-707.
Kitagawa, S., Kitaura, R and Noro, S. (2004). Functional porous coordination polymers, Angewandte Chemie International edition, 43(18): 2334-2375.
Kellett, A., Howeb, O., Connor, M., McCann, M., Creaven, B. S., McClean, S., Foltyn-ArfaKia, A.,Casey, A and Devereux, M. (2012). Radical-induced DNA damage by cytotoxic square-planar copper (II) complexes incorporating o-phthalate and 1, 10-phenanthroline or 2, 2′-dipyridyl, Free Radical Biology and Medicine, 53:564-576.
Li, Q., Sun, D., Zhou, Y., Liu, D., Zhang, Q and Liu, J.(2012). Anticancer activity of novel ruthenium complex with 1, 10-phenanthrolineselenazole as potent telomeric G-quadruplex inhibitor, Inorganic Chemical Communications, 20: 142-146.
Liscombe, D.K., MacLeod, B. P., Loukanina, N., Nandi, O. I and Facchini, P. J. (2005)
Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms, Phytochemistry, 66(20): 2500-2520.
Masters, P.A., O’Bryan, T.A., Zurlo, J., Miller, D. Q and Joshi, N. (2003). Trimethoprim-Sulfamethoxazole Revisited, Archives of Internal Medicine, 163: 403-410.
McCann, M., Kellett, A., Kavanagh, K., Devereux, M and Santos, A. L. S. (2012). Deciphering the antimicrobial activity of phenanthroline chelators, Current Medicinal Chemistry, 19(17): 2703-2714.
Mondelli, M., Pavan, F., de Souva, P.C., Leite,C.Q., Ellena, J., Nascimento, O.R., Facchin, G and Torre, M.H. (2013).Study of A Series of Cobalt(II) Sulfonamide Complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. Tuberculosis. Crystal Structure of [Co (Sulfamethoxazole)2(H2O)2]•H2O , Journal of Molecular Structure,1036: 180–187
Mukherjee, R. (2000). Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects, Coordination Chemistry Reviews, 203(1): 151-218.
Osowole, A. A.,Wakil, S.M and Alao, O.K. (2015). Synthesis, Characterization and Antimicrobial Activity of Some Mixed Trimethoprim -Sulfamethoxazole Metal Drug Complexes, World Applied Sciences Journal, 33(2): 336-342.
Raman, N., Sakthivel, A and Rajasekaran, K. J. (2009) . Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review, Journal of Coordination Chemistry. 62(5): 691-709.
Raman, N., Mahalakshmi, R and Mitu L.( 2014). Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: synthesis, structural elucidation and DNA binding properties of metal(II) complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131: 355–364.
Rîmbu, C., Danac, R and Pui, A. (2014). Antibacterial Activity of Pd(II) Complexes With Salicylaldehyde-Amino Acids Schiff Bases Ligands. Chemical and Pharmaceutical Bulletin, 62(1): 12-15.
Rostamizadeh, S., Daneshfar, Z and Moghimi, H. (2019). Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity, European Journal of Medicinal Chemistry, 171: 364-371.
Santos, A. L. S., Sodre, C. L.,Valle, R. S.,Silva, B. A., Abi-Chacra, E. A., Silva, L. V., Souza-Goncalves, A. L., Sangenito, L. S., Goncalves, D. S., Souza, L. O. P., Palmeira, V. F., d'Avila-Levy, C. M., Kneipp, L. F., Kellett, A., McCann, M and Branquinha, M. H. (2012). Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis, Current Medicinal Chemistry, 19(17): 2715–2737.
Sarhan, B.M., Waheed, E.J. and Naema, B.Z. (2011). Synthesis and characterization of some mixed-ligand complexes containing N-Acetyl Tryptophan and alpha-picoline with some metal salts. Ibn Al-Haitham Journal for Pure and Applied Science 24(1):1-12
Sayar, E., Şahin, S., Cevheroğlu, Ş and Hincal, A. A. (2008). Comparison of dissolution profiles of two commercially available Co-Trimoxazole tablets, FABAD Journal of Pharmaceutical Sciences, 33: 87–94.
Scarborough, C.C and Wieghardt, K. (2011). Electronic structure of 2, 2′-bipyridine organotransition-metal complexes. Establishing the ligand oxidation level by density functional theoretical calculations, Inorganic Chemistry, 50(20): 9773-9793.
Schoffers, E.(2003). Reinventing Phenanthroline Ligands − Chiral Derivatives for Asymmetric Catalysis?, European Journal of Organic Chemistry, 2003 (7): 1145-1152.
Scotti, N., Ravasio, N., Psaro, R., Evangelisti, C., Dworakowska, S., Bogdal, D and Zaccheria, F. (2015). Copper mediated epoxidation of high oleic natural oils with a cumene–O2 system,
Catalysis Communication, 64: 80-85.
Selvaganapathy M, Raman N (2016) Pharmacological Activity of a Few Transition Metal Complexes: A Short Review, Journal of Chemical Biology & Therapeutics, 1(2): 1-17
Sevlever, D., Mann, K.J and Medof, M.E. (2001). Differential effect of 1, 10-phenanthroline on mammalian, yeast, and parasite glycosylphosphatidylinositol anchor synthesis, Biochemical and Biophysical Research Communications, 288(5): 1112-1118.
Shahzadi, S., Ali, S., Bhatti, M.H., Fettouhi, M and Athar, M. (2006). Chloro-diorganotin (IV) complexes of 4-methyl-1-piperidine carbodithioic acid: Synthesis, X-ray crystal structures, spectral properties and antimicrobial studies, Journal of Organometallic Chemistry,691(8): 1797-1802.
Shubert, U.S and Eschbaumer, C. (2002). Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers, Angewandte Chemie International edition, 41(16): 2892-2926
Silver, L. L. (2011). Challenges of Antibacterial Discovery, Clinical Microbiology Reviews, 24(1): 71–109
Silverstein, R. M., Webster, F. X. and D. J. Kiemle . (2005). Spectrometric identification of organic compound, 7th ed. John-wiley. New York.
Singh, R.V and Chaudhary, A. (2004). Biologically relevant tetraazamacrocyclic complexes of manganese: synthetic, spectral, antimicrobial, antifertility and antiinflammatory approach, Journal of Inorganic Biochemistry, 98(11): 1712-1721.
Soliman, A.A. and Mohamed, G.G. (2004). Study of the ternary complexes of copper with
salicylidene-2-aminothiophenol and some amino acids in the solid state, Thermochimica
Acta, 421(1): 151-159.
Sreekanth, A., Joseph, M., Fun, H.K and Kurup, M.R.P. (2006). Formation of manganese (II) complexes of substituted thiosemicarbazones derived from 2-benzoylpyridine: Structural and spectroscopic studies, Polyhedron, 25(6): 1408-1414.
Starosta, R., Komarnicka, U. K., Sobczyk, M and Barys, M. (2012). Laser induced multi-component luminescence of [CuNCS (1, 10-phen) P (CH2N (CH2CH2) 2O) 3]—the first example of CuNCS complexes with diimines and tris(aminomethyl) phosphanes, Journal of Luminescence, 132(8): 1842-1847.
Sudhamani, C.N., Naik, H.S.B., Naik, T.R.R. and Prabhakara, M.C. (2009). Synthesis, DNA binding and cleavage studies of Ni (II) complexes with fused aromatic N-containing ligands, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,72(3):643-647.
Taghreed, H. A., Israa, A.J. I. and Mohmmud, M. J.( 2015). Studies on the interaction and effect of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) and Cd(II) mixed-ligand complexes of cephalexin mono hydrate and furan-2-carboxylic acid to different DNA sources, Journal of Chemical and Pharmaceutical Research, 7(4): 815-816.
Tirkeso, R. A., Tsega, T. W and Amdemichael, T. (2019). Synthesis, Characterization, and Antibacterial Activities of 1H-Imidazo [5, 6-f] [1,10] Phenanthroline-2(3H)-Thione and Its Ni(II) and Cu(II) Complexes, Journal of Chemistry, 2019 :1-10.
Toshima, N., Shiraishi, Y., Teranishi, T., Miyake, M.,Tominaga, T., Watanabe, H., Brijoux, W.,
Bonnemann, H and Schmid, G. (2001). Various ligandâ€stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase, Applied Organometallic Chemistry, 15(3): 178-196.
Villar-Garcia, I. J., Abebe, A and Chebude, Y. (2012). 1, 10-Phenanthrolinium ionic liquids exhibiting excellent solubility for metal complexes: Potential solvents for biphasic and supported ionic liquid phase (SILP) Catalysis, Inorganic Chemistry Communications, 19: 1-3
Wojciechowska, A., Staszak, Z., Bronowska, W., Pietraszko, A and Cieslak-Golonka, A. (2001). Spectroscopic and structural studies of chromate ions in zinc complexes with 2, 2′-bipyridine. Analysis of the lowest triplet states in the CrO42− entity, Polyhedron, 20(15-16): 2063-2072.
Yan, B and Gu, Y. J. (2013). A novel white-luminescent ternary europium hybrids with phenanthroline functionalized periodic mesoporous organosilicas (PMOs) and 2-methyl-9-hydroxyphenalenone, Inorganic Chemistry Communication, 34: 75-78.
Yan, B and Gu, Y. J. ( 2013). A novel white-luminescent ternary europium hybrids with phenanthroline functionalized periodic mesoporous organosilicas (PMOs) and 2-methyl-9-hydroxyphenalenone, Inorganic Chemistry Communication, 34, 75-78.
Yang, C., Luo, J., Ma, J., Zhu, D., Miao, L., Zhang, Y., Liang, L and Lu, M. (2012). Luminescent properties and CH3COO− recognition of europium complexes with different phenanthroline derivatives as second ligands, Synthetic Metals, 162(13-14): 1097-1106.
Zhao, J.F., Chen, L., Sun, P.J. Hou, X.Y., Zhao, X.H., Li, W.J., Xie, L.H.,Qian, Y., Shi, N.E., Lai, W.Y., Fan, Q.L and Huang, W. (2011). One-pot synthesis of 2-bromo-4, 5-diazafluoren-9-one via a tandem oxidation–bromination-rearrangement of phenanthroline and its hammer-shaped donor–acceptor organic semiconductors, Tetrahedron, 67(10): 1977-1982.
Zhang, H. G., Tao, X. T., Chen, K. S., Yuan, C. X and Jiang, M. H. (2011). Synthesis and photophysical properties of a new two-photon absorbing chromophor containing imidazo [4, 5-f][1, 10] phenanthroline, Synthetic Metals, 161(3-4): 354-359.
Zahid H. Chohan, Hazoor A. Shad and Nasim F. H. (2009).Synthesis, characterization and biological properties of sulfonamide derived compounds and their transition metal complexes, Applied Organometallic Chemistry, 23( 8): 319-328.
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences