CO-PRODUCTION OF EXTENDED-SPECTRUM BETA-LACTAMASES AND METALLO BETA-LACTAMASES AMONG MULTI-DRUG RESISTANT GRAM-NEGATIVE BACTERIA ISOLATES COLLECTED FROM TERTIARY HOSPITALS IN OYO STATE, NIGERIA
Abstract
Extended-spectrum beta-lactamases (ESBLs) and metallo beta-lactamases (MBLs) are compromising the chemotherapeutic use of cephalosporins and carbapenems respectively. This study investigated the burden of ESBLs and MBLs co-production among multi-drug resistant (MDR) Gram-negative bacteria collected from two tertiary hospitals in Oyo State. A total of 240 non-duplicated clinical isolates of Escherichia coli, Klebsiella spp. and Pseudomonas spp. were collected from the Microbiology units of two tertiary hospitals in Oyo State and their identities authenticated using standard identification techniques. Antimicrobial susceptibility testing was carried out by disc-diffusion method and isolates exhibiting resistance to ≥3 classes of antibiotics selected as MDR strains. ESBL and MBL production was detected by double-disc synergy test (DDST) and combined-disc-diffusion test (CDDT) respectively. Selected beta-lactamase genes were detected by PCR, amplicons sent out for sequencing and phylogenetic tree of the sequences constructed using Mega X software. MDR was exhibited by 43.8% of the isolates. ESBLs and MBLs were produced by 32.4% and 7.6% of the MDR isolates respectively. Co-production of ESBL and MBL was observed in 6.7% of the MDR isolates. BlaCTX-M-15 (67.7%), blaTEM-1 (55.9%), blaSHV-1 (47.1%), co-existing blaTEM + blaSHV, blaTEM + blaCTX-M, blaCTX-M + blaSHV (each in 5.9%) and blaCTX-M +blaTEM + blaSHV (26.5%) were detected among the ESBL-producers. MBL genes were not detected among the MBL-producers. Only blaTEM-1 sequences showed two different claudes on the phylogenetic tree. The occurrence of MDR isolates co-harbouring different classes of beta-lactamse genes observed in this study is of public health concern and hence, requires stricter control of antibiotic use.
References
Alabi, O. S., Mendonça, N., Adeleke, O. E. and da Silva, G. J. (2017). Molecular screening of antibiotic-resistant determinants among multidrug-resistant clinical isolates of Proteus mirabilis from southwest Nigeria. African Health Sciences. 17(2): 356-365.
Alabi, O. S., Obisesan, A. O. and Ola, A. A. (2016). Prevalence of methicillin-resistant Staphylococcus aureus and extended-spectrum β–lactamase producers among bacteria isolated from infected wounds in a tertiary hospital in Ibadan city. African Journal of Clinical and Experimental Microbiology. 17(4): 235-242.
Ayukekbong, J. A., Ntemgwa, M. and Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance and Infection Control. 6(1):47.
Balsalobre, L., Blanco, A. and Alarcón, T. (2019). Betaâ€Lactams. Antibiotic Drug Resistance, 57-72. Available at: https://doi.org/10.1002/9781119282549.ch3.
Behzadi, P., Behzadi, E., Yazdanbod, H., Aghapour, R., Akbari, C. M. and Salehian, O. D. (2010). A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Maedica (Buchar). 5(2):111–115.
Blaser, M. J. (2016). Antibiotic use and its consequences for the normal microbiome. Science. 352(6285):544–545. doi:10.1126/science.aad9358
Bora, A., Sanjana, R., Jha, B. K., Mahaseth, S. N. and Pokharel, K. (2014). Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes.7:557.
Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical microbiology reviews, 14(4), 933-951.
Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012). Ready for a world without antibiotics? The pensières antibiotic resistance call to action: Antimicrobial and Infection Control. 1:11. Available at: http://www.aricjournal.com/content/1/1/11
Chang, Q., Wang, W., Regev-Yochay, G., Lipsitch, M. and Hanage, W. P. (2015). Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl. 8(3):240–247. doi:10.1111/eva.12185
Chaw, P. S., Höpner, J. and Mikolajczyk, R. (2018). The knowledge, attitude and practice of health practitioners towards antibiotic prescribing and resistance in developing countries—A systematic review. J Clin Pharm Ther. 43(5):606–613. doi:10.1111/jcpt.12730
Chokshi, A., Sifri, Z., Cennimo, D. and Horng, H. (2019). Global Contributors to Antibiotic Resistance. J Glob Infect Dis. 11(1):36–42. doi:10.4103/jgid.jgid_110_18
Cilloniz, C., Dominedo, C. and Torres, A. (2019). Multidrug Resistant Gram-Negative Bacteria in Community-Acquired Pneumonia. Crit Care 23: 79. https://doi.org/10.1186/s13054-019-2371-3
Clinical and Laboratory Standards Institute, (2017). Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement M100-S27, Clinical and Laboratory Standards Institute, Wayne, PA, USA.
Founou, R. C., Founou, L. L. and Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 12:e0189621. doi:10.1371/journal.pone.0189621
Gaude, G. S. and Hattiholli, J. (2013). Rising bacterial resistance to beta-lactam antibiotics: Can there be solutions? Journal of Dr. NTR University of Health Sciences, 2(1):4.
Glass, B. D. (2014). Counterfeit drugs and medical devices in developing countries. Research and Reports in Tropical Medicine, 2014: 11-22.
Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L., Dai, M., Wang, Y., Liu, Z. and Yuan, Z. (2014). Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol.5:288. doi:10.3389/fmicb.2014.00288
Jiang, X. W., Cheng, H., Huo, Y. Y., Xu, L., Wu, Y. H., Liu, W. H., Tao, F. F., Cui, X. J. and Zheng, B. W. (2018). Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594. Scientific reports, 8(1), 803. doi: 10.1038/s41598-018-19279-0.
Kaur, A. and Singh, S. (2018). Prevalence of extended spectrum betalactamase (ESBL) and metallobetalactamase (MBL) producing Pseudomonas aeruginosa and Acinetobacter baumannii isolated from various clinical samples. Journal of pathogens. 2018: 1 -7. https://doi.org/10.1155/2018/6845985
Kelesidis, T. and Falagas, M. E. (2015). Substandard/counterfeit antimicrobial drugs. Clinical Microbiology Reviews. 28(2): 443-464.
Lee, K., Lim, Y. S., Yong, D., Yum, J. H. and Chong, Y. (2003). Evaluation of the Hodge test and the imipenemâ€EDTA double-disk synergy test for differentiating metalloâ€betaâ€lactamase producing isolates of Pseudomonas spp. and Acinetobacter. spp. J. Clin. Microbiol., 41:4623–4629.
Levashov, E. A. (2014). Overcoming resistance to beta-lactam antibiotics. Svinovodstvo (Moskva), (8), 38-39.
Leverstein-van Hall, M. A., Blok, H. E. M., Donders, A. R. T., Paauw, A., Fluit, A. C., and Verhoef, J. (2003). Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. The Journal of infectious diseases. 187(2): 251-259.
Lucet, J. C., Decré, D., Fichelle, A., Joly-Guillou, M. L., Pernet, M., Deblangy, C., Kosmann, M. J. and Régnier, B. (1999). Control of a prolonged outbreak of extended-spectrum β-lactamase-producing Enterobacteriaceae in a university hospital. Clinical infectious diseases, 29(6): 1411-1418.
Lynch III, J. P., Clark, N. M., and Zhanel, G. G. (2013). Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert opinion on pharmacotherapy. 14(2): 199-210.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., L. B. Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 18: 268–281.
Mahrouki, S., Chihi, H., Bourouis, A., Ben-Moussa, M., Barguellil, F. and Belhadj, O. (2011). First characterisation in Tunisia of plasmid mediated AmpC bêta-lactamase DHA-1 coexpressed TEM-24 and QnrA6 in a multidrug resistant Proteus mirabilis clinical strain. African Journal of Microbiology Research 5: 3913-3918.
Manyi-Loh, C., Mamphweli, S., Meyer, E., and Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4): 795.
Mendonca, N., Joana, L., Vera, M. and Eugenia, F., (2007). The Antimicrobial Resistance Surveillance Program in Portugal, Manuela C. Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrobial Agents and Chemotherapy, 51: 1946-1955.
Mirza, S., Jadhav, S., Misra, R. N. and Das, N. K. (2019). Coexistence of β-Lactamases in Community-Acquired Infections in a Tertiary Care Hospital in India. International Journal of Microbiology. 2019: 1-5. Available at: https://doi.org/10.1155/2019/7019578
Nepal, K., Pant, N. D., Neupane, B., Belbase, A., Baidhya, R., Shrestha, R. K., Lekhak, B., Bhatta, D. R. and Jha, B. (2017). Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Annals of clinical microbiology and antimicrobials, 16(1), 62. doi 10.1186/s12941-017-0236-7
Oberoi, L., Singh, N., Sharma, P. and Aggarwal, A. (2013). ESBL, MBL and Ampc β lactamases producing superbugs–Havoc in the Intensive Care Units of Punjab India. Journal of clinical and diagnostic research: JCDR, 7(1), 70.
Olowe, O. A., Oladipo, G. O., Makanjuola, O. A. and Olaitan, J. O. (2012). Prevalence of extended spectrum beta-lactamases (ESBLs) carrying genes in Klebsiella spp. from clinical samples at Ile-Ife, South Western Nigeria. International Journal of Pharma Medicine and Biological Sciences 1: 2278-5221.
Olowo-okere, A., Abdullahi, M. A., Ladidi, B. K., Suleiman, S., Tanko, N., Ungokore, H. Y., and Aliyu, A. (2019). Emergence of metallo-b-lactamase producing gram-negative bacteria in a hospital with no history of Carbapenem usage in northwest Nigeria. Ife Journal of Science, 21(2), 323-331.
Pitout, J. D. D. and Laupland, K. B. 2008. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect Dis. 8:159–166.
Pitout, J. D., Nordmann, P., Laupland, K. B., Poirel, L. (2005). Emergence of Enterobacteriaceae producing extended-spectrum _-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 56: 52– 59.
Prestinaci, F., Pezzotti, P. and Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 109(7): 309. doi:10.1179/2047773215Y.0000000030
Rawat, D. and Nair, D. (2010). Extended-spectrum β-lactamases in Gram negative bacteria. Journal of global infectious diseases. 2(3): 263-274. doi: 10.4103/0974-777X.68531.
Shrestha, P., Cooper, B. S., Coast, J., Oppong, R., Thuy N. D. T., Phodha, T., Celhay, O., Guerin, P. J., Wertheim, H. and Lubell, Y. (2018). Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 7(98). doi:10.1186/s13756-018-0384-3
Song, W., Kim, J., Bae, I. K., Jeong, S. H., Seo, Y. H., Shin, Jong, H., Jang, S. J., Uh, Y., Shin, Jeong, H., Lee, M-K. and Lee, K. (2011). Chromosome-Encoded AmpC and CTX-M Extended-Spectrum Beta-Lactamases in Clinical Isolates of Proteus mirabilis from Korea. Antimicrobial Agents and Chemotherapy 55: 1414-1419.
Teklu, D. S., Negeri, A. A., Legese, M. H., Bedada, T. L., Woldemariam, H. K. and Tullu, K. D. (2019). Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control. 8(1): 39. Available at: https://doi.org/10.1186/s13756-019-0488-4
Thanner, S., Drissner, D., and Walsh, F. (2016). Antimicrobial resistance in agriculture. MBio, 7(2), e02227-15. doi: 10.1128/mbio.02227-15
Ugwu, M. C., Shariff, M., Nnajide, C. M., Beri, K., Okezie, U. M., Iroha, I. R. and Esimone, C. O. (2020). Phenotypic and Molecular Characterization of β-Lactamases among Enterobacterial Uropathogens in Southeastern Nigeria. Canadian Journal of Infectious Diseases and Medical Microbiology. 2020: 1-9. Available at: https://doi.org/10.1155/2020/5843904
Worthington, R. J. and Melander, C. (2013). Overcoming resistance to β-lactam antibiotics. The Journal of organic chemistry. 78(9), 4207-4213.
Yadav, K. K., Adhikari, N., Khadka, R., Pant, A. D. and Shah, B. (2015). Multidrug resistant Enterobacteriaceae and extended spectrum β-lactamase producing Escherichia coli: a cross-sectional study in National Kidney Center, Nepal. Antimicrob Resist Infect Control. 4: 42. https://doi.org/10.1186/s13756-015-0085-0.
Copyright (c) 2020 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences