STRUCTURAL PROPERTIES OF AMORPHOUS GEO2: A MOLECULAR DYNAMICS SIMULATION STUDIES
References
Brazhkin, V. V., Lyapin, A. G., & Trachenko, K. (2011). Atomistic modeling of multiple amorphous-amorphous transitions in SiO2 and GeO2 glasses at megabar pressures. Physical Review B, 83(13), 132103. doi:10.1103/PhysRevB.83.132103 DOI: https://doi.org/10.1103/PhysRevB.83.132103
Guthrie, M., Tulk, C. A., Benmore, C. J., Xu, J., Yarger, J. L., Klug, D. D., Hemley, R. J. (2004). Formation and structure of a dense octahedral glass. Phys Rev Lett, 93(11), 115502. doi:10.1103/PhysRevLett.93.115502 DOI: https://doi.org/10.1103/PhysRevLett.93.115502
Henderson, G. S., & Fleet, M. E. (1991). The structure of glasses along the Na2O-GeO2. Journal of Non-Crystalline Solids, 134(3), 259-269. doi:https://doi.org/10.1016/0022-3093(91)90384-I DOI: https://doi.org/10.1016/0022-3093(91)90384-I
Hong, X., Newville, M., Duffy, T. S., Sutton, S. R., & Rivers, M. L. (2014). X-ray absorption spectroscopy of GeO2 glass to 64 GPa. Journal of Physics: Condensed Matter, 26(3), 035104. doi:10.1088/0953-8984/26/3/035104 DOI: https://doi.org/10.1088/0953-8984/26/3/035104
Igwe, I. E., & Batsari, Y. T. (2022). Atomistic Simulation of the Effect of Temperature on Mechanical Properties of some Nano-Crystalline Metals. African Scientific Reports, 1(2), 95–102. doi:10.46481/asr.2022.1.2.33 DOI: https://doi.org/10.46481/asr.2022.1.2.33
Lorch, E. (1969). Neutron diffraction by germania, silica and radiation-damaged silica glasses. Journal of Physics C: Solid State Physics, 2(2), 229. doi:10.1088/0022-3719/2/2/305 DOI: https://doi.org/10.1088/0022-3719/2/2/305
Matthieu, M. (2004). Structure of densified amorphous germanium dioxide. Journal of Physics: Condensed Matter, 16(10), L131. doi:10.1088/0953-8984/16/10/L03 DOI: https://doi.org/10.1088/0953-8984/16/10/L03
Micoulaut, M., Cormier, L., & Henderson, G. S. (2006). The structure of amorphous, crystalline and liquid GeO2. Journal of Physics: Condensed Matter, 18(45), R753. doi:10.1088/0953-8984/18/45/R01 DOI: https://doi.org/10.1088/0953-8984/18/45/R01
Oeffner, R. D., & Elliott, S. R. (1998). Interatomic potential for germanium dioxide empirically fitted to an ab initio energy surface. Physical Review B, 58(22), 14791-14803. doi:10.1103/PhysRevB.58.14791 DOI: https://doi.org/10.1103/PhysRevB.58.14791
Peralta, J., Gutiérrez, G., & Rogan, J. (2008). Structural and vibrational properties of amorphous GeO2: a molecular dynamics study. Journal of Physics: Condensed Matter, 20(14), 145215. doi:10.1088/0953-8984/20/14/145215 DOI: https://doi.org/10.1088/0953-8984/20/14/145215
Polsky, C. H., Smith, K. H., & Wolf, G. H. (1999). Effect of pressure on the absolute Raman scattering cross section of SiO2 and GeO2 glasses. Journal of Non-Crystalline Solids, 248(2), 159-168. doi:https://doi.org/10.1016/S0022-3093(99)00238-0 DOI: https://doi.org/10.1016/S0022-3093(99)00238-0
Price, D. L., Saboungi, M.-L., & Barnes, A. C. (1998). Structure of Vitreous Germania. Phys Rev Lett, 81(15), 3207-3210. doi:10.1103/PhysRevLett.81.3207 DOI: https://doi.org/10.1103/PhysRevLett.81.3207
Salmon, P. S., Drewitt, J. W. E., Whittaker, D. A. J., Zeidler, A., Wezka, K., Bull, C. L., . . . Marrocchelli, D. (2012). Erratum: Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa. Journal of Physics: Condensed Matter, 24(43), 439601. doi:10.1088/0953-8984/24/43/439601 DOI: https://doi.org/10.1088/0953-8984/24/43/439601
Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 18(1), 015012. doi:10.1088/0965-0393/18/1/015012 DOI: https://doi.org/10.1088/0965-0393/18/1/015012
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., . . . Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. doi:https://doi.org/10.1016/j.cpc.2021.108171 DOI: https://doi.org/10.1016/j.cpc.2021.108171
Zeidler, A., Wezka, K., Rowlands, R. F., Whittaker, D. A. J., Salmon, P. S., Polidori, A., . . . Wilson, M. (2014). High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics. Phys Rev Lett, 113(13), 135501. doi:10.1103/PhysRevLett.113.135501 DOI: https://doi.org/10.1103/PhysRevLett.113.135501
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences