DETERMINATION OF THE EFFECTS OF RADIO SIGNAL STRENGTH AND ATTENUATION AS A FUNCTION OF LINEAR DISTANCE AND SOME ATMOSPHERIC CONDITIONS ON TSBS, JALINGO, TARABA STATE

Authors

  • Dlama Yabwa Taraba State University Jalingo, Nigeria
  • O. M. Kanu
  • M. I. Dawaki

DOI:

https://doi.org/10.33003/fjs-2023-0703-1861

Keywords:

Attenuation, Time, atmosphere, Signal strength meter, radio

Abstract

Taraba state broadcasting station (TSBS) is situated in Jalingo with coordinates (8º 56N 11º 55E) with transmission frequency of 90.6 MHz covering a distance of 250 km and operates for up to fifteen hours a day. The signal strength of TSBS Jalingo was taken as a function of distance and some variables which are temperature, refractivity, humidity, solar radiance and other ionospheric factors in cognizance. The measured values shows negative correlation between the signal strength of TSBS with the linear distance as measured both in volt per meter and in decibels these values were calculated based on a reference distance of 1 km with value of 0.7746 (v/m) or -2.62 (dB).The signal strength values with the daily hourly record did not match, which is in excellent agreement from literature. While atmospheric factor (refractivity) as thus observed is seen that high refractivity leads to less radio wave propagation and vice versa. This research work can be employed in communications technology, to determine the effects of “topographical terrain on frequency propagation” when citing any other Radio Station in Nigeria.

References

Adingra A.A., Kouadio A.N., Ble’ M.C and Kouassi A.M.(2012) Bacteriological analysis of surface water collected from the Grand-Lahou Lagoon Cote d’ ivoire.Afr. Joul.of Microbiol.Research 13:3097-3105.

Agwu, O.A., Ilori, M.O., Adebusoye, S.A. and Amund O.O (2012). A comparative Study of Bio surfactants synthesis by Pseudomonas aeruginosa isolated from clinical and environmental samples.Pet.Sci. & tech. 30:5, 503-517

Anversa, L., Célia, R., Stancari, A., & Garbelotti, M. (2019). Pseudomonas aeruginosa in public water supply. Water Practice & Technology, 14(3), 732–737. https://doi.org/10.2166/wpt.2019.057

Bhawsar N., Amrute and Singh M. (2014). Isolation and characterization of Pseudomonas aeruginosa from waste soybean oil as biosuractant which enhances biodegradation of industrial waste with special reference to Kosmi Dam, Betul district (M.P.).Int.Joul. Of Adv. Research 6:778-783

Botzenhar, K and Doring, G.1993.Ecology and epidemiology of pseudomonas aeruginosa. “Pseudomonas aeruginosa as an opportunistic pathogen” pp.1-7

Castillo, MA. Allan, JD., Sinsabaugh, RL. Kling, GW. (2004). Seasonal and interannual variations of bacterial production in lowland Rivers of Orinoco basin. Freshw. Biol. 49:1400-1414

Colins, R., Elliott, S., Adams, R. (2005) Overland flow delivery of faecal bacteria to a headwater pastoral stream. J. Appl.Microbiol. 99:126-132

Colinon, C., Deredjian, A., Hien, E., Brothier, E., Bouziri, L., Cournoyer, B., Hartman, A., Henry, S., Jolivet, C., Ranjard, L., Nazaret, S. (2013) Detection and enumeration of Pseudomonas aeruginosa in soil and manure assessed by an ecfXq PCR assay. Joul. Of Appl Microbiol 10:1111-12189

Chatterjee, P., Davis, E., Yu, F., James, S., Wildschutte, J. H., Wiegmann, D. D., Lipuma, J. J. (2017). Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa. Applied and Environmental Microbiology, 83(2), 1–13.

Crone, S., Orez, M. V., Kvich, L., Saunders, A. M., Malone, M., Nicolaisen, M. H. … Bjarnsholt, T. (2019). The environmental occurrence of Pseudomonas aeruginosa. Journal of Pathology Microbiology and Immunology, 128, 220–231. https://doi.org/10.1111/apm.13010

Eyles, R., Niyogi, D., Townsend, C., Benwell, G., Weinsteen, P. (2003) Spatial and temporal patterns of Campylobacter contamination underlying public health risk in Taieri River, New Zealand. Joul.Environ.Qual.32:1820-1828

Grosso-Becerra, M.-V., Santos-medellín, C., González-valdez, A., Méndez, J., Delgado, G., Morales-espinosa, R., Soberón-chávez, G. (2014). Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics, 15, 318–332.

Januário, A. P., Afonso, N., Mendes, S., & Rodrigues, M. J. (2020). Faecal Indicator Bacteria and Pseudomonas aeruginosa in Marine Coastal Waters: Is there a Relationship? Pathogens, 9(13), 1–10.

Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T, Nishimura M, Kogure K (2007) Isolation of Pseudomonas aeruginosa from open ocean and comparison with fresh water, clinical and animal strains. Microb Ecol 53:173-186

Kaszab, E., Radó, J., Kriszt, B., Pászti, J., Lesinszki, V., Tóth, G., Szoboszlay, S. (2021). Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. International Journal of Environmental Health Research, 31(7), 848–860. https://doi.org/10.1080/09603123.2019.1691719

Marsalek, J., Dutka, B.J., Tsanis, I.K. (1994). Urban impacts on Microbiological pollution of St. Clair River in Sarnia, Ontario. Wat. Sci. Tech 30:177

Marufen N., Animash S., Malek M.A., Ansaruzzaman M.D. and Mahububur R. (2015) Prevalence and Resistance pattern of Pseudomonas aeruginosa isolated from surface water. Adv. In Micronil. (5):74-81

Mohamed H., Abirosh H., Sherin V. (2008). Increased prevalence of indicator and pathogenic bacteria in Kumarakam Lake: a function of salt water regulator in Vembanade Lake, A Ramsar site along west coast of India in Sengupta M, Dalwani R (eds) proceedings of Taal 2007, the 12th world Lake conference pp.250-256

Niewolak, S. and Opieka, A. (2000). Potentially Pathogenic Microorganisms in water and bottom sedimentsin Czarna Haneza River. Polish Joul. Of Env. Studies 9(3):183-194

Pellerony, NJ. 1984. Pseudomonadaceae in Kreig NR. Hoet, J.G (ed). Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp.140-218

Pellet,S., Bigley, DV., Grimes, DJ.(1983) Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl. Environ Microbiol 45:328-332

Shivin, B., Arvind, N., and Sharad, S. (2015) Observation on Pseudomonas aeruginosa in Kshipra River with Relation to Anthropogenic Activities.Int.joul. Of cur.Microbiol. &appl. Sci. 4:672-684

Sivri, N., Jones, M., & Allen, M. J. (2014). Pseudomonas aeruginosa isolated from the Marine Environments in the Istanbul Coastal Area (Turkey). Fresenius Environmental Bulletin, 23(12b), 3340–3344.

Suzuki Y., Shota K., Masateru N. and Alusi I. (2013) Susceptibility of Pseudomonas aeruginosa isolates collected from river water in Japan to anti Pseudomonas agent. J.Scetoenv.0:02-11

Sivri, N., Jones, M., & Allen, M. J. (2014). Pseudomonas aeruginosa isolated from the Marine Environments in the Istanbul Coastal Area (Turkey). Fresenius Environmental Bulletin, 23(12b), 3340–3344.

Wei, L., Wu, Q., Zhang, J., Guo, W., Gu, Q., & Wu, H. (2020). Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa isolates from Drinking Water in China. Frontiers in Microbiology, 11, 1–9. https://doi.org/10.3389/fmicb.2020.544653

WHO (2001), Guidelines for drinking water quality.Addendiem. Microbiological agents in drinking water. World Health Organization, Geneva, Switzerland 188p.

Published

2023-07-09

How to Cite

Yabwa, D., Kanu, O. M., & Dawaki, M. I. (2023). DETERMINATION OF THE EFFECTS OF RADIO SIGNAL STRENGTH AND ATTENUATION AS A FUNCTION OF LINEAR DISTANCE AND SOME ATMOSPHERIC CONDITIONS ON TSBS, JALINGO, TARABA STATE. FUDMA JOURNAL OF SCIENCES, 7(3), 207 - 214. https://doi.org/10.33003/fjs-2023-0703-1861