GEOSPATIAL ESTIMATION OF ROOFTOP SOLAR PHOTOVOLTAIC POTENTIAL IN CALABAR MUNICIPAL, CROSS RIVER STATE, NIGERIA

  • Paul U. Ugbong University of Calabar, Calabar
  • Muhammad Isma’il
  • A. K. Usman
Keywords: Rooftop Photovoltaic Potential, Solar Radiation, Calabar Municipal, Geospatial Techniques

Abstract

The availability of significant solar resource and the continuous hike in economic activities as well as an increased population in Calabar Municipal holds a substantial solar photovoltaic (PV) potential of rooftops in the city. This is as a result of the consequent increase in urban households. This Research work is aimed at estimating solar PV potential of rooftops in the study area using geospatial techniques. It adopted Geospatial techniques’ approach in identifying rooftops available for PV deployment in Calabar Municipal. High resolution satellite imagery gotten from google Earth, Digital surface model (DSM)/ Digital elevation model (DEM) and ArcGIS 10.8 were employed in this study. In other to estimate the PV potential of rooftops, criteria such as Solar Radiation/ Irradiance, Total Roof Area (Building footprints), Slope (rooftop inclination angle) and Aspect (Buildings’ orientation) were analyzed. The results gotten from these analyses were analyzed further and rooftops that fall below the acceptable range of the aforementioned criteria were excluded from the analysis. Results showed that the total roof area in Calabar Municipal was estimated as 5,965,916.44 m2 (5.97 km2) while the available roof area suitable for PV installations was evaluated as 5,964,966.42 m2 (5.96 km2). The findings of this research indicates that Calabar Municipal has good solar radiation as well as enough suitable rooftop area hence a very good place for solar PV deployments. Also, this study is accurate enough to be used as a guide in decision making on power (electricity) generation in Calabar Municipal of Cross River State.

References

Abdurrahman, M., Gambo, J., Musa, I. M., Sa’adu, I., Shehu, M. & Dahiru, Z. (2023). “Study of Solar Radiation and Sun Location at Midsummer of a Specific Geographic Position.” Fudma journal of sciences, 3(3), 301 - 308.

Agugiaro, G., Remondino, F., Stevanato, G., De Filippi, R., & Furlanello, C., (2011): “Estimation of solar radiation on buildings roofs in mountainous areas”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 38- 3. DOI: https://doi.org/10.5194/isprsarchives-XXXVIII-3-W22-155-2011

Akorede, M. F., Hizam, H. & Pouresmaeil, E. (2010). “Distributed energy resources and benefits to the environment”. Journal of Renewable and Sustainable Energy Reviews: 14. 724–734. DOI: https://doi.org/10.1016/j.rser.2009.10.025

Antigha, R. E. E., Akor, A. J., Ayotamuno, M. J., Ologodien, I. & Ogarekpe, N. M. (2014). “Rainfall runoff model for Calabar Metropolis using multiple regression”. Nigerian Journal of Technology: 33 (4). 566-573. DOI: https://doi.org/10.4314/njt.v33i4.18

Arnold, W. & Reitze, J. (2010). “Electric power in a carbon constrained world”. William Mary Environ Law Policy Rev: 34. 821 DOI: https://doi.org/10.2139/ssrn.1618596

Awuh, M. E., Officha, M. C., Okolie, A. O. & Enete, I. C. (2018). “Land-Use/Land-Cover Dynamics in Calabar Metropolis Using a Combined Approach of Remote Sensing and GIS”. Journal of Geographic Information System: 10. 398-414. DOI: https://doi.org/10.4236/jgis.2018.104021

Ayodele, T. R., Ogunjuyigbe, A. S. O. & Nwakanma, K. C. (2021). “Solar energy harvesting on building’s rooftops: A case of a Nigeria cosmopolitan city”. Journal of Renewable Energy Focus: 38. DOI: https://doi.org/10.1016/j.ref.2021.06.001

Boz, M. B., Calvert, K., & Brownson, J. R. S. (2015). “An automated model for rooftop PV systems assessment in ArcGIS using LIDAR. Journal of AIMS Energy: 3. 401–420. DOI: https://doi.org/10.3934/energy.2015.3.401

Brito, M. C., Gomes, N., Santos T., & Tenedório, J. A. (2012). “Photovoltaic potential in a Lisbon suburb using LiDAR data”. Journal of Solar Energy: 86. 283–288. DOI: https://doi.org/10.1016/j.solener.2011.09.031

Buffat, R., Grassi, S. & Raubal, M. (2018): “A scalable method for estimating rooftop solar irradiation potential over large regions”. Journal of Applied Energy: 216. 389-401. DOI: https://doi.org/10.1016/j.apenergy.2018.02.008

Castellanos, S., Sunter, D. A. & Kammen, D. M (2017): “Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?”. Environmental Research Letters. 12: 125005 DOI: https://doi.org/10.1088/1748-9326/aa7857

Choi, Y., Rayl, J., Tammineedi, C. & Brownson, J. (2011): “PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas”. Journal of Solar Energy 85: 2924-293. DOI: https://doi.org/10.1016/j.solener.2011.08.034

Dioha, M. O. & Kumar, A. (2018): “Rooftop solar PV for urban residential buildings of Nigeria: A preliminary attempt towards potential estimation”. AIMS Energy, 6(5): 710–734. DOI: 10.3934/energy.2018.5.710 DOI: https://doi.org/10.3934/energy.2018.5.710

Edem, A. M. (2017). “Waste to energy project in Calabar” Being a project submitted to the department of Mechanical and Production Engineering,Vaasan Ammattikorkeakoulu University of Applied Sciences.

Ediene, V. F. & Iren, O. B. (2017): “Impact of abattoir effluents on the pH, organic matter, heavy metal levels and microbial composition of surrounding soils in Calabar Municipality”. Asian Journal of Environment and Ecology: 2 (3). 1-10. DOI: https://doi.org/10.9734/AJEE/2017/33341

Ekpiken, W. E. & Ukpabio, G. (2015): “Environmental literacy awareness and information dissemination among adolescents in Calabar Municipality local government area secondary schools in Cross River State, Nigeria”. Asia Pacific Journal of Education, Arts and Sciences: 2 (3).

Eronini, N. (2014). “The adoption of solar photovoltaic systems among industries and residential houses in southern Nigeria”. Being an MSc. Thesis submitted to the department of Ecotechnology and sustainable building engineering in Mid Sweden University.

Ezugwu, C. N. (2015). “Renewable energy in resources in Nigeria: Sources, problems and prospects”. Journal of clean energy technologies: 3 (1). DOI: https://doi.org/10.7763/JOCET.2015.V3.171

Fakhraian E., Forment, M.A., Dalmau, F.V., Nameni,A & Guerroro, M. J. C. (2021): “Determination of the urban rooftop photovoltaic potential: A state of the art”. Energy reports 7: 176–185. DOI: https://doi.org/10.1016/j.egyr.2021.06.031

Faithpraise, F. O., Charles, M., Otosi, F. B., Nwaeto, L. & Chatwin, C. (2017). “A survey on the status of solar energy utilization within the tertiary institutions in Calabar”. International Journal of Scientific & Engineering Research: 8 (6).

Gagnon, P., Margolis, R., Melius, J., Phillips, C. & Elmore, R. (2016): “Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment”. NREL/TP-6A20-65298, National Renewable Energy Laboratory, Golden, CO. DOI: https://doi.org/10.2172/1236153

Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2017). “Tilt and azimuth angles in solar energy applications: A review”. Journal of Renewable and Sustainable Energy Reviews: 77. 147-168. DOI: https://doi.org/10.1016/j.rser.2017.03.131

Harmsen, R., Moth. L., & Kumar, A. (2014). “Applicability of energy saving obligations to Indian electricity efficiency efforts”. Journal of Energy Strategy Reviews: 2. 298–306. DOI: https://doi.org/10.1016/j.esr.2013.07.001

Huang, Z., Mendis, T., & Xu, S. (2009): “Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China”. Journal of Applied Energy:250. 283–291. DOI: https://doi.org/10.1016/j.apenergy.2019.04.113

Ibor, U. W. & Atomode, T. I (2014). “Health service characteristics and utilization in Calabar Metropolis, Cross River State, Nigeria”. Academic Journal of Interdisciplinary studies: 3 (1). 265-270. DOI: https://doi.org/10.5901/ajis.2014.v3n1p265

Inyang, P.E.B. (1980). “Calabar Environs: Geographical Studies”. University of Calabar, Calabar.

Izquierdo, S., Rodrigues, M., & Fueyo, N. (2008): “A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations”. Journal of Solar Energy 82:929–39. DOI: https://doi.org/10.1016/j.solener.2008.03.007

Khan, J. & Arsalan, M. H. (2016): “Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi-Pakistan”. Journal of Renewable Energy: 90. 188-203. DOI: https://doi.org/10.1016/j.renene.2015.12.058

Kumar, A. & Kandpal, T. C. (2007a). “Potential and cost of CO2 emissions mitigation by using solar photovoltaic pumps in India”. International Journal of Solar Energy: 26. 159–166. DOI: https://doi.org/10.1080/14786450701679332

Kumar, A. & Kandpal, T. C. (2007b). “CO2 emissions mitigation potential of some renewable energy technologies in India”. Journal of Energy Source 29: 1203–1214. DOI: https://doi.org/10.1080/009083190965343

Kumar, A. & Kandpal, T.C. (2005). “Solar drying and CO2 emissions mitigation: Potential for selected cash crops in India”. Journal of Solar Energy: 78. 321–329. DOI: https://doi.org/10.1016/j.solener.2004.10.001

Kumar, D. & Shekhar, S. (2014). “Computing building rooftop solar potential for photovoltaics”. ISPRS TC VIII Int. Symp. Oper. Remote Sens. Appl. Oppor. Prog. Challenges Hyderabad, India, December 9–12, 2014.

Latif, Z. A., Zaki, N. A. M. & Salleh, S. A. (2012): “GIS-based estimation of rooftop solar photovoltaic potential using LiDAR”. IEEE 8th International Colloquium on signal processing and its applications. DOI: https://doi.org/10.1109/CSPA.2012.6194755

Lukac, N., Zlaus, D., Seme, S., Zalik, B. & Stumberger, G. (2013). “Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data”. Journal of Applied Energy:102. 803–812. DOI: https://doi.org/10.1016/j.apenergy.2012.08.042

Mamun, M. A. A., Islam, M. M., Hassanuzzaman, M., & Selvaraj, J. (2021): “Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation”. Journal of Energy and Built Environment: 7.21.

Maresova, E. (2014): “LIDAR based estimation of rooftop photovoltaic potential of Wageningen”. A thesis submitted at the Wageningen University and Research centre, The Netherlands. In partial fulfilment of the degree of Master of Science.

Margolis, R. & Zuboy, J. (2006): “Nontechnical Barriers to Solar Energy Use: Review of Recent Literature”. (Golden, CO: National Renewable Energy Laboratory (NREL)(www.osti.gov/scitech/biblio/893639) DOI: https://doi.org/10.2172/893639

Nguyen, H. & Pearce, J. (2010). “Estimating potential photovoltaic yield with r.sun and the open source geographic resources analysis support system”. Journal of Solar Energy 84: 831-843. DOI: https://doi.org/10.1016/j.solener.2010.02.009

Obafemi, F. N. & Ifere, E. O. (2013). “Non Technical loses, energy efficiency and conservative methodology in the electrical sector in of Nigeria: The case of Calabar, Cross River State”. International journal of energy economies and policy: 3 (2). 185-192.

Okafor, E. C. N. & Uzuegbu, C. K. A. (2010). “Challenges to development of renewable energy for electric power sector in Nigeria”. International Journal of Academic Research: 2(2). 211-216.

Pearce, J. M. (2002). “Photovoltaics: A path to sustainable futures”. Journal of Futures: 34(7). 663–674 DOI: https://doi.org/10.1016/S0016-3287(02)00008-3

Purohit, P., Kumar, A. & Kandpal, T.C. (2002): “Renewable energy technologies for domestic cooking in India: Estimation of CO2 emissions mitigation potential”. International Journal of Amb Energy: 23. 127–135. DOI: https://doi.org/10.1080/01430750.2002.9674881

Sakti, A. D., Ihsan, K. T. N., Anggraini, T. S., Shabrina, Z., Sasongko, N. A., Fachrizal, R., Aziz, M., Aryal, J., Yuliarto, B., Hadi, P. O. & Wikantika, K. (2022): “Multicriteria assessment for city-wide rooftop solar PV deployment: A case study of Bandung, Indonesia”. Journal of Remote Sensing: 14. 2786. DOI: https://doi.org/10.3390/rs14122796

Schwartz, L. et al (2017): “Electricity end uses, energy efficiency, and distributed energy resources”. Baseline Lawrence Berkeley National Laboratory Report LBNL-1006983 (https://emp.lbl.gov/publications/electricity-end-uses-energy) DOI: https://doi.org/10.2172/1342949

Singh, R. & Banerjee, R. (2015): “Estimation of rooftop solar photovoltaic potential of a city”. Journal of Solar Energy: 115. 589-602. DOI: https://doi.org/10.1016/j.solener.2015.03.016

Strupeit, L. & Palm, A. (2016): “Overcoming barriers to renewable energy diffusion: business models for customer-sited solar photovoltaics in Japan, Germany and the United States”. J. Clean. Prod. 123 124–36. DOI: https://doi.org/10.1016/j.jclepro.2015.06.120

U.S. Energy Information Administration. (2013). “Renewable Energy Explained”. Retrieved from http://www.eia.gov/energyexplained/index.cfm?page=renewable_home on the 5th of December 2021.

Wiginton, L. K., Nguyen, H. T. & Pearce, J. M. (2010): “Quantifying rooftop solar photovoltaic potential for regional renewable energy policy”. Journal of Computers, Environment and Urban Systems: 34. 345-357. DOI: https://doi.org/10.1016/j.compenvurbsys.2010.01.001

Zekai, S. (2004): “Solar energy in progress and future research and trends”. Progress in Energy and Combustion Science 30 (4): 367-416. DOI: https://doi.org/10.1016/j.pecs.2004.02.004

Published
2023-06-30
How to Cite
Ugbong P. U., Isma’il M., & Usman A. K. (2023). GEOSPATIAL ESTIMATION OF ROOFTOP SOLAR PHOTOVOLTAIC POTENTIAL IN CALABAR MUNICIPAL, CROSS RIVER STATE, NIGERIA. FUDMA JOURNAL OF SCIENCES, 7(3), 272 - 281. https://doi.org/10.33003/fjs-2023-0703-1840