THE GROWTH FACTOR AND BULK HYGROSCOPICITY OF ATMOSPHERIC SOOT OF URBAN AEROSOLS
Abstract
Aerosols within urban atmosphere can be composed of water-soluble aerosols from industrial emissions, insoluble and soot from biomass and bio-fuel emissions respectively. In this study, simulation was carried out using Optical Properties of Aerosols and Clouds (OPAC) to model the hygroscopic growth factor and bulk hygroscopicity of Soot at spectral range of 0.25 to 1.00 mm for eight different relative humidities. The results in this study revealed that the aerosol hygroscopic growth factor increases with relative humidity (RH) while the bulk hygroscopicity decreases with increase in RH from 50-99% RHs. The aerosol hygroscopic growth factor increases with increase in RH while the bulk hygroscopicity decreases with increase in RH for the number, volume and mass ratios. The aerosol growth factor revealed that the mixture is barely hygroscopic, less hygroscopic and more hygroscopic from 50 – 80% RH, 90 – 95% RH and 98 – 99% RH respectively for the number mix ratio. The aerosol growth factor revealed that the mixture is less hygroscopic, more hygroscopic and most hygroscopic from 50 – 80% RH, 90 – 95% RH and 98 – 99% RH respectively for the volume and mass mix ratios. The bulk hygroscopicity ranges between 0.02007 to 0.09456 for the number mix ratio from model 1 to model 3, the bulk hygroscopicity ranges between 0.13596 to 0.32956 for the volume mix ratio from model 1 to model 3 while the bulk hygroscopicity ranges between 0.12831 to 0.29925 for the mass mix ratio from model 1 to model 3.
References
Akande, J. O., Momoh, M., Saidu, I. G., Iliyasu, M. I., Akpootu, D. O., Abubakar, M. B and Abdullahi, M. B (2013). Evaluation of Residence Time of Dust Aerosols during the Harmattan Season in Sokoto Area of Northwestern Nigeria, Using Visibility Data. IOSR Journal of Environmental Science, Toxicology And Food Technology., 4(4), 71-74. DOI: https://doi.org/10.9790/2402-0447174
Akpootu, D. O and Abdul salami, M. J (2013). The Optical and Microphysical Properties of water Soluble Aerosols. The International Journal of Engineering And Science., 2(12), 66-79.
Akpootu, D. O and Gana, N. N (2013). The Effect of Relative Humidity on the Hygroscopic Growth Factor and Bulk Hygroscopicity of water Soluble Aerosols. The International Journal Of Engineering And Science., 2(11), 48-57.
Akpootu, D. O and Momoh, M (2013a). The Ångström Exponent and Turbidity of Soot Component in the Radiative Forcing of Urban Aerosols. Nigerian Journal of Basic and Applied Science., 21(1), 70-78. ISSN: 0794-5698: DOI: http://dx.doi.org/10.4314/njbas.v21i1.11
Akpootu, D. O and Momoh, M (2013b). The Scattering Coefficient, Extinction Coefficient and Single Scattering albedo of water Soluble in the Radiative Forcing of Urban Aerosols. Scholars Research Library., 5(2), 109-120. ISSN: 0975-508X
Akpootu, D. O and Muhammad, S. B (2013). The Angstrom Exponent and Turbidity of Soot Component in the Radiative Forcing of Urban Aerosols. A paper presented at the 35th Annual Nigerian Institute of Physics National Conference held at the University of Abuja, Nigeria on the 25th-30th March, 2013. DOI: https://doi.org/10.4314/njbas.v21i1.11
Akpootu, D. O and Sharafa, S. B. (2013). The scattering coefficient, extinction coefficient and single scattering albedo of soot in the radiative forcing of urban aerosols, Scholars Research Library., 4(3), 31-41.
Akpootu, D. O and Tijjani, B. I (2014). The Aerosol Hygroscopic Growth Factor and Bulk Hygroscopicity of Soot in the Hygroscopicity of Urban Aerosols. A paper presented at the 24th Annual Congress and Colloquium of the Nigerian Association of Mathematical Physics held at University of Benin, Benin City, Nigeria on the 25th-28th February, 2014.
Bond, T.C. and Bergstrom, R.W. (2006): Light absorption by Carbonaceous particles: An Investigative Review, Aerosol Sci. Technol., 40, 27-67. DOI: https://doi.org/10.1080/02786820500421521
Christensen, S. I. and Petters, M. D. (2012): The role of temperature in cloud droplet activation, J. Phys. Chem. A 116(39): 9706–9717. DOI: https://doi.org/10.1021/jp3064454
Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, A. S. H.,Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Baltensperger, U.( 2011): Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11, 1155– 1165, doi:10.5194/acp-11-1155- 2011. DOI: https://doi.org/10.5194/acp-11-1155-2011
Essienimo, A. O., Momoh, M and Akpootu, D. O. (2015a). Differential Particle Size Distribution of Aerosol across North Western Region of Nigeria. International Research Journal of Engineering and Technology (IRJET)., 2(9), 555-561. e-ISSN: 2395 -0056, p-ISSN: 2395-0072.
Essienimo, A. O., Momoh, M and Akpootu, D. O. (2015b). Percentage Composition of Particle Size Distribution of Aerosol mass concentration during 2014 Winter Season for some Selected Regions in Northwestern Nigeria. International Research Journal of Engineering and Technology (IRJET)., 2(9), 562-569. e-ISSN: 2395 -0056, p-ISSN: 2395-0072.
Essienimo, A. O., Momoh, M and Akpootu, D. O. (2016a). Mass Concentration gradient of Aerosol Across Selected States in Northwestern Nigeria. International Journal of Technology Enhancements and Emerging Engineering Research., 4(1), 17 – 22. ISSN: 2347-4289
Essienimo, A. O., Momoh, M and Akpootu, D. O. (2016b). Seasonal and Monthly Estimation of Mean Residence Time of the Harmattan Dust in Kano, Northern Nigeria Using Horizontal Visibility Data. International Journal of Technology Enhancements and Emerging Engineering Research., 4(2), 9 – 15. ISSN 2347-4289
Gysel, M., McFiggans, G. B., and Coe, H. (2009): Inversion of tandem differential mobility analyser (tdma) measurements, J. Aerosol Sci., 40, 134–151, doi:10.1016/j.jaerosci.2008.07.013. DOI: https://doi.org/10.1016/j.jaerosci.2008.07.013
Hess, M., Koepke, P and Schult, I (1998): Optical Properties of Aerosols and Clouds. American Meteorology Society. DOI: https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
Intergovernmental Panel on Climate Change IPCC. (2013): Summary for Policymakers, in: Climate Change: The Physical Science Basis. Contribution of Working Group I
to the sixth Assessment Report Cambridge University Press, Cambridge, UK and New York, NY,USA.
IPCC (2007): Climate Change 2007: The Scientific Basis. In Solomon, S., Ding, Y., Griggs, D.G., Noguer, M., Vanderlinden, P.G., Dai, X., Maskell, K. and Johnson, C.A. (Eds). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge.
Liu, P. F., Zhao, C. S., Gobel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Milderger, K., Henning, S., Stratmann, F., and Wiedensohler, A. (2011): Hygroscopic Properties of Aerosol Particles at High Relative Humidity and their Diurnal Variations in the North China Plain, Atm. Chem. Phys., Discuss., 11, 2991-3040. DOI: https://doi.org/10.5194/acp-11-3479-2011
Lohmann, U. and Feichter, J. (2005) Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics 5(3), 715–737. DOI: https://doi.org/10.5194/acp-5-715-2005
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H and Facchini, M.C (2006): The effect of physical and chemical aerosol properties on warm cloud droplet activation Atmos. Chem. Phys 6, 2593-2649. DOI: https://doi.org/10.5194/acp-6-2593-2006
McMurry, P.H., and Stolzenburg, M.R. (1989): On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmos Environ., 23:497–507. doi:10.1016/0004-6981(89) 90593-3 DOI: https://doi.org/10.1016/0004-6981(89)90593-3
Meier J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Br¨ uggemann, E., Herrmann, H., Min, H., and Wiedensohler, A. (2009): Hygroscopic growth of urban aerosols particles in Beijing (China) during wintertime: A comparison of three experimental methods., Atmos. Chem. Phys., 9, 6865–6880, www.atmos-chem- phys.net/9/6865/2009/ DOI: https://doi.org/10.5194/acp-9-6865-2009
Meseke, N. O., Akpootu, D. O., Falaiye, O. A. and Targema, T. V. (2022). COMPARATIVE ASSESSMENT OF PARTICULATE MATTER USING LOW COST SENSOR: A CASE STUDY OF ABUJA AND KANO, NIGERIA. FUDMA Journal of Sciences (FJS)., Vol. 6 No. 3, June, 2022, pp 290 – 300. ISSN 2645 – 2944. DOI: https://doi.org/10.33003/fjs-2022-0604-1066 DOI: https://doi.org/10.33003/fjs-2022-0604-1066
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Prevot, A. S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., Hallquist, M., Baltensperger, U., and Ristovski, Z. D. (2009): Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles, Atmos. Chem. Phys., 9, 721–732, doi:10.5194/acp-9-721-2009. DOI: https://doi.org/10.5194/acp-9-721-2009
Pandis, S. N., Wexler, A. S., and Seinfeld, J. H. (1995): Dynamics of tropospheric aerosols, J. Phys. Chem., 99, 9646–9659. DOI: https://doi.org/10.1021/j100024a003
Petters, M. D. and Kreidenweis, S. M. (2007): A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961– 1971, doi:10.5194/acp-7- 1961-2007. DOI: https://doi.org/10.5194/acp-7-1961-2007
Putaud, J.P. (2012): Aerosol hygroscopicity at Ispra EMEP-GAW station by M. Adam et al., Atmos. Chem. Phys. Discuss., 12, C1316–C1322
Randles, C. A., Russell, L. M., and Ramaswamy, V. (2004): Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing, Geographical Research Letters., Vol. 31, LI6108, doi: 10, 1029/2004GL020628. DOI: https://doi.org/10.1029/2004GL020628
Satheesh, S.K and Krishna Moorthy, K. (2005): Radiative effects of natural aerosols: A Review. Atmos. Environ 39, 2089-2110. DOI: https://doi.org/10.1016/j.atmosenv.2004.12.029
Seinfeld, J. H. and Pandis, S. N. (2006): Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, Inc., New York.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S and Wood, R. (2016). Improving our fundamental understanding of the role of aerosol- cloud interactions in the climate system. Proceedings of the National Academy of Sciences 113(21), 5781–5790. DOI: https://doi.org/10.1073/pnas.1514043113
Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M. J., Coe, H., Zardini, A. A., Marcolli, C., Krieger, U. K., and Peter, T. (2007): Hygroscopic growth and Water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures, J. Aerosol Sci., 38, 157–171, doi:10.1016/j.jaerosci.2006.11.005. DOI: https://doi.org/10.1016/j.jaerosci.2006.11.005
Sloane, C. S. and Wolff, G. T. (1985): Prediction of ambient light-scattering using a physical model responsive to relative-humidity – validation with measurements from detroit, Atmos. Environ., 19, 669–680. DOI: https://doi.org/10.1016/0004-6981(85)90046-0
Stock, M., Cheng, Y. F. Birmili, W., Massling, A., Wehner, B., Muller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N., and Wiedensohler. A. (2011): Atmos. Chem. Phys., 11, 4251–4271, www.atmos-chemphys. net/11/4251/2011/ doi:10.5194/acp-11-4251- 2011 DOI: https://doi.org/10.5194/acp-11-4251-2011
Stokes, R. H., and Robinson, R. A. (1966): Interactions in aqueous nonelectrolyte solutions. I. Solute solvent equilibria, J. Phys. Chem., 70, 2126–2130. DOI: https://doi.org/10.1021/j100879a010
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences