TOXIC METALS LEVELS IN AGROCHEMICALS SOLD IN SABON GARI MARKET, KANO, NORTHWESTERN NIGERIA
Abstract
Heavy metals such as Cadmium (Cd), Nickel (Ni), lead (Pb), Zinc (Zn), and Copper (Cu) originate from various sources including agriculture. From agricultural sources, they comprise agrochemicals such as insecticides and pesticides. The study aimed at evaluating the levels of toxic metals in agrochemicals (pesticides) sold at Sabon Gari market, Kano. 42 brands of pesticides were obtained from the market. They were digested and then analyzed by Atomic Absorption Spectrophotometer for determination of Cd, Pb and Ni. Cd was found to be highest in LF (0.0833mg/l) and least in RCK (0.0015mg/l) while not detected in CBT, CPT, DDF, and PRF. Pb was found to be highest in FUP (2.995mg/l) and least in PRF (0.0434mg/l) while not detected in BF, CLV, CPF, CPT, DDF, GRF, LCH, LF, PK, and RV. Ni was only detected in DDF (0.305mg/l). Therefore, it is clear that the pesticides contain heavy metals slightly above the tolerable limits which could get into the soil subsequently accumulate overtime and pose serious threat to the plants and other living organisms.
References
Abdel Khalek S. T., Mostafa, Z. K., Hassan, H. A., Abd El-Bar, M. M. & Abu El-Hassan, G. M. M. (2018). A New List to the Entomofauna Associated with Faba Bean, Vicia faba L. (Fabales: Fabaceae) Grown in El-Kharga Oasis, New Valley Governorate, Egypt. Egypt. Acad. J. Biol. Sci., 11:95–100. doi: 10.21608/eajb.2018.11901 DOI: https://doi.org/10.21608/eajb.2018.11901
Abdullahi, I. L. & Sani, A. (2020). Welding fumes composition and their effects on blood heavy metals in albino rats. Toxicology Reports 7, 1495–1501. DOI: https://doi.org/10.1016/j.toxrep.2020.10.021
Abdullahi, N., Igwe, E. C., Dandago, M. A., & Umar, N. B. (2021). Heavy metals in food crops: ideal sources and roles of urban agriculture in facilitating their consumption- a review. FUDMA Journal of Sciences, 5(2), 34 - 45. https://doi.org/10.33003/fjs-2021-0502-520 DOI: https://doi.org/10.33003/fjs-2021-0502-520
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3): 42. doi: 10.3390/toxics9030042. DOI: https://doi.org/10.3390/toxics9030042
Alloway, B. J. (2013). Sources of Heavy Metals and Metalloids in Soils. In: Alloway B.J., editor. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. Springer; Dordrecht, The Netherlands: pp. 11–50. DOI: https://doi.org/10.1007/978-94-007-4470-7_2
Ashraf, U., Kanu, A. S., Deng, Q., Mo, Z., Pan, S., Tian, H. 7 Tang X. (2017). Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science, 8:259. doi: 10.3389/fpls.2017.00259. DOI: https://doi.org/10.3389/fpls.2017.00259
Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., Abbas, R. N. 7 Tang, X. (2015). Lead toxicity in rice: Effects, mechanisms, and mitigation strategies—a mini review. Environment Sciences Pollution Research, 22: 18318–18332. doi: 10.1007/s11356-015-5463-x. DOI: https://doi.org/10.1007/s11356-015-5463-x
ATSDR (2011). Toxicological Profie for Nickel, Agency for Toxic Substances and Disease Registry, US Public Health Service.
Boedeker, W., Watts, M., Clausing, P. & Marquez, E. (2020). The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20, 1875. https://doi.org/10.1186/s12889-020-09939-0 DOI: https://doi.org/10.1186/s12889-020-09939-0
Chauhan, P., Rajguru, A. B., Dudhe, M. Y. & Mathur, J. (2020).cEfficacy of lead (Pb) phytoextraction of five varieties of Helianthus annuus L. from contaminated soil. Environment & Technology Innovation, 18:100718. doi: 10.1016/j.eti.2020.100718 DOI: https://doi.org/10.1016/j.eti.2020.100718
Cho-Ruk, K., Kurukote, J., Supprung, P. & Vetayasuporn, S. (2006). Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology, 5:1–4. doi: 10.3923/biotech.2006.1.4. DOI: https://doi.org/10.3923/biotech.2006.1.4
Ferreira, V. B., Estrella, L. F., Alves, M. G. R., Gallistl, C., Vetter, W., Silva, T. T. C., Malm, O., Torres, J. P. M. & Abadio-Finco, F. D. B. (2020). Residues of legacy organochlorine pesticides and DDT metabolites in highly consumed fish from the polluted Guanabara Bay, Brazil: Distribution and assessment of human health risk. Journal of Environmental Sciences Health, 55, 30–41. DOI: https://doi.org/10.1080/03601234.2019.1654808
Gichner, T., Žnidar, I. & Száková, J. (2008). Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutation Research-Genetics Toxicology Environment Mutagenesis 652: 186–190. doi: 10.1016/j.mrgentox.2008.02.009. DOI: https://doi.org/10.1016/j.mrgentox.2008.02.009
Gimeno-García, E., Andreu, V. & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental pollution (Barking, Essex: 1987), 92(1): 19–25. https://doi.org/10.1016/0269-7491(95)00090-9 DOI: https://doi.org/10.1016/0269-7491(95)00090-9
IARC (2012). A Review of Human Carcinogens: Metals, Arsenic, Fibres and Dusts, vol. 100C, International Agency for Research Cancer: Monographs on the Evaluation of Carcinogenic Risks to Humans.
Ishaq, M., Mohammad, S., Nabavi, B. & Parsa, Y. (2013). Bioaccumulation of trace Nmercury in trophic levels of benthic, benthopelagic, pelagic fish species, and seaNbirds from Arvand river, Iran. Biological Trace Element Research 156, 175e180. DOI: https://doi.org/10.1007/s12011-013-9841-2
Jayaraj, R., Megha, P. & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3-4):90-100. doi: 10.1515/intox-2016-0012. DOI: https://doi.org/10.1515/intox-2016-0012
Masindi, V. & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In: Saleh H.E.-D.M., Aglan R.F., editors. Heavy Metals. IntechOpen; london, UK: pp. 115–132. DOI: https://doi.org/10.5772/intechopen.76082
Miranda, J. A. T., Fogaça, F. H. S., Cunha, S. C., Alonso, M. B., Torres, J. P. M. & Fernandes, J. O. (2022). Agrochemical Residues in Fish and Bivalves from Sepetiba Bay and Parnaiba River Delta, Brazil. International Journal Environmental Research Public Health, 19, 15790. https://doi.org/10.3390/ ijerph192315790 DOI: https://doi.org/10.3390/ijerph192315790
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A. & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34(3), 101865. DOI: https://doi.org/10.1016/j.jksus.2022.101865
Oyekunle, J. A. O., Akindolani, O. A., Sosan, M. B. & Adekunle, A. S. (2017). Organochlorine pesticide residues in dried cocoa beans obtained from cocoa stores at Ondo and Ile-Ife, Southwestern Nigeria. Toxicology Reports, 4:151-159. doi: 10.1016/j.toxrep.2017.03.001. DOI: https://doi.org/10.1016/j.toxrep.2017.03.001
Özkara, A., Akyil, D. & Konuk, M. (2016). Pesticides, Environmental Pollution, and Health. In: Larramendy, M., & Soloneski, S. (Eds.). Environmental Health Risk - Hazardous Factors to Living Species. InTech. doi: 10.5772/63094 DOI: https://doi.org/10.5772/63094
Pham, L. K. (2012). GIS-based modelling of agrochemical use, distribution and accumulation in the Lower Mekong Delta, Vietnam: A case study of the risk to aquaculture. Thesis, Aquaculture eTheses. University of Stirling.
Raimi, M. O. (2021). Self-reported symptoms on farmers health and commonly used pesticides related to exposure in Kura, Kano State, Nigeria. Annals of Community Medicine and Public Health, 1:1002.
Reddy, A. M., Kumar, S. G., Jyothsnakumari, G., Thimmanaik, S. & Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60: 97–104. doi: 10.1016/j.chemosphere.2004.11.092. DOI: https://doi.org/10.1016/j.chemosphere.2004.11.092
Singh, A., Sharma, R. K., Agrawal, M. & Marshall, F. M. (2010). Risk assessment of heavy metal toxicity through contaminated agrochemicals from waste water irrigated area of Varanasi, India. Tropical Ecology, 51(2S): 375-387.
Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. A. (2011). Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering. 1–31. doi: 10.1155/2011/939161. DOI: https://doi.org/10.1155/2011/939161
Turek, A., Wieczorek, K. & Wolf, W. M. (2019). Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem. Sustainability, 11(6):1753. https://doi.org/10.3390/su11061753 DOI: https://doi.org/10.3390/su11061753
Udoh, G. D. & Gibbs, J. L. (2022). Commentary: Highlighting the need for pesticides safety training in Nigeria: A survey of farm households in Rivers State. Frontiers in Public Health, 10: 988855. doi: 10.3389/fpubh.2022.988855. DOI: https://doi.org/10.3389/fpubh.2022.988855
Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P. & Dumat, C. (2009). Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157:1178–1185. doi: 10.1016/j.envpol.2008.09.053. DOI: https://doi.org/10.1016/j.envpol.2008.09.053
WHO/UNEP (1990). Editors, Public health impact of pesticides used in agriculture. Geneva: World Health Organization; p. 128. Available from: https://apps.who.int/iris/bitstream/handle/10665/39772/9241561394.pdf?sequence=1&isAllowed=y. [cited 2020 Mar 12]
World Health Organization (WHO) (1996). Permissible Limits of Heavy Metals in Soil and Plants. World Health Organization; Geneva, Switzerland: 1996
Yuen, K. W., Hanh, T. T., Quynh, V. D., Switzer, A. D., Teng, P. & Lee, J. S. H. (2021). Interacting effects of land-use change and natural hazards on rice agriculture in the Mekong and Red River deltas in Vietnam. Natural Hazards Earth System Science, 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021. DOI: https://doi.org/10.5194/nhess-21-1473-2021
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences