• Sunday Samuel Oluyamo Federal University of Technology, Akure
  • Olalekan Femi Famutimi Federal University of Technology, Akure, Ondo State, Nigeria
  • G. I. Olatona
  • Adewumi Isaac Popoola
  • Olajide Ibukun-Olu Olusola Federal University of Technology, Akure
Keywords: Coastal landform, Ball-milling, Nanosilicon, Qualitative analysis


The research focused on the qualitative analysis of high grade nanosilicon obtained from coastal landform in Ese Odo Local Government Areas of Ondo State, Nigeria. The landform in the study areas were noted to possess different colours with appearances and physical presentation presumably of silicon content. The Silicon from the landform were obtained using magnesium as a reducing agent. The results of the energy dispersive x-ray (EDX) analyses of the samples ball-milled for 24 hours revealed that silicon has the highest percentage of all the elements observed in the spectra. The morphology of nanosilicon from Pekehan revealed the presence of agglomeration of irregular shaped particles with average particles sizes of 50.27 nm while Igbekebo and Oju-ala coastal landforms showed the presence of agglomerated ovoid shape with average particle sizes of 54.25 nm and 53.52 nm respectively. The X-ray Diffraction (XRD) spectral of the nanosilicon shows sharp distinct peaks which indicate crystalline nature of the samples. Based on the results obtained, it can be concluded that, the percentage of nanosilicon values obtained ranges between 68.85% to 73.03% which are relatively high enough and can find suitable industrial applications in sectors like the lithium-ion battery, biomedical devices, photovoltaic/solar cell and computer industries etc.


Ahn, J. H., Kim, J. Y., Seol, M. L., Baek, D. J., Guo, Z., Kim, C. H., Choi, S. J. and Choi, Y. K. (2013). A pH sensor with a double-gate silicon nanowire field-effect transistor. Appl Phys Lett 102 (8): 083701 DOI: https://doi.org/10.1063/1.4793655

Arunmetha, S., Vinoth, M., Srither, S., Karthik, A., Sridharpanday, M., Suriyaprabha, R., Manivasakan, P. and Rajendran, V. (2018). Study on production of silicon nanoparticles from quartz sand for hybrid solar cell applications. Journal of Electron Materials 47 (1): 493–502 DOI: https://doi.org/10.1007/s11664-017-5794-0

Bao, Z., Ernst, E. M., Yoo, S. and Sandhage, K. H. (2009). Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Advance Materials 21 (4): 474–478 DOI: https://doi.org/10.1002/adma.200801499

Bao, Z., Weatherspoon, M. R., Shian, S., Cai, Y., Graham, P. D., Allan S. M., Ahmad, G. and Dickerson, M. B., Church, B. C., Kang, Z., Abernathy, H. W., Summers, C. J., Liu, M and Sandhage, K. H. (2007). Chemical reduction of three-dimensional silica micro- assemblies into microporous silicon replicas. Nature 446 (7132): 172–175 DOI: https://doi.org/10.1038/nature05570

Batchelor, L., Loni, A., Canham, L. T., Hasan, M. and Coffer, J. L. (2012). Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4 (4): 259–266 DOI: https://doi.org/10.1007/s12633-012-9129-8

Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A. and Cui, Y. (2008). High-performance lithium battery anodes using siliconnanowires. Nature nanotechnology 3, 31-35. DOI: https://doi.org/10.1038/nnano.2007.411

Chen, K, Bao, Z., Shen, J., Wu, G., Zhou, B. and Sandhage, K. H. (2012). Freestanding Monolithic silicon aerogels. Journal of Materials Chemistry 22 (32): 16196-16200 DOI: https://doi.org/10.1039/c2jm31662e

Cui, L. F., Hu, L., Wu, H., Choi, J. W. and Cui, Y. (2011). Designing nanostructured Si anodes for high energy lithium ion batteries. Journal of The Electrochemical Society 158, A592. DOI: https://doi.org/10.1149/1.3560030

Dal Martello, G., Tranell, E., Gaal, S. Raaness, O. S, Tang, K. and Arnberg, L. (2011). Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide, Metallurgical and Materials Transactions B, Volume 42b, 939-950 DOI: https://doi.org/10.1007/s11663-011-9529-y

Darghouth, A., Aouida, S. and Bessais, B. (2021). High Purity Porous Silicon Powder Synthesis by Magnesiothermic Reduction of Tunisian Silica Sand. Silicon 13 (7): 667 DOI: https://doi.org/10.1007/s12633-020-00433-1

Favors, Z., Wang, W., Bay, H. H., Mutlu, Z., Ahmed, K., Liu, C., Ozkan, M and Ozkan, C. S. (2014) Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Sci Rep 4: 5623 DOI: https://doi.org/10.1038/srep05623

Furquan, M., Khatribail, A. R., Vijayalakshmi, S. and Mitra, S. (2018). Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. J Power Sources 382: 56–68 DOI: https://doi.org/10.1016/j.jpowsour.2018.02.011

Gao, P., Tang, H., Xing, A. and Bao, Z. (2017). Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications. Electrochim Acta 228: 545–552 DOI: https://doi.org/10.1016/j.electacta.2017.01.119

Hai, N. H., Grigoriants, I. and Gedanken, A. (2009). Converting Stöber silica and Mediterranean sand to high surface area silicon by a reaction under autogenic pressure at elevate temperatures. Journal of Physical Chemistry C 113 (24): 10521–10526 DOI: https://doi.org/10.1021/jp809432t

Halbwax, M., Sarnet ,T., Delaporte, P., Sentis, M., Etienne, H., Torregrosa, F., Vervisch, V., Perichaud, I. and Martinuzzi, S. (2008). Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication. Thin Solid Films 516 (20): 6791–6795 DOI: https://doi.org/10.1016/j.tsf.2007.12.117

How to Cite
Oluyamo S. S., Famutimi O. F., Olatona G. I., Popoola A. I., & Olusola O. I.-O. (2023). QUALITATIVE ANALYSIS OF HIGH GRADE NANOSILICON OBTAINED FROM COASTAL LANDFORM IN ESE ODO LOCAL GOVERNMENT AREA OF ONDO STATE, NIGERIA. FUDMA JOURNAL OF SCIENCES, 7(3), 232 - 238. https://doi.org/10.33003/fjs-2023-0703-1767