STABILITY ANALYSIS OF A SHIGELLA INFECTION EPIDEMIC MODEL AT ENDEMIC EQUILIBRIUM
Abstract
In this study, we modified continuous mathematical model for the dynamics of shigella outbreak at constant recruitment rate formulated by (Ojaswita et al., 2014). In their model, they partitioned the population into Susceptible (S), Infected (I) and recovered (R) individuals. We incorporated a vaccinated class (V), educated class (G), exposed class (E), asymptomatic (A) hospitalized class (H) and Bacteria class (B) with their corresponding parameters. We analyzed a SVGEAIHRB compartmental nonlinear deterministic mathematical model of shigella epidemic in a community with constant population. Analytical studies were carried out on the model using the method of linearized stability. The basic reproductive number that governs the disease transmission is obtained from the largest eigenvalue of the next-generation matrix. The endemic equilibrium is computed and proved to be locally and globally asymptotically stable if and unstable if . Finally, we simulate the model system in MATLAB and obtained the graphical behavior of the infected compartments. From the simulation, we observed that the shigella infection was eradicated when while it persist in the environment when .
References
Addo, D. (2009). Mathematical model for the control of malaria, Ph.D. thesis, University Of Cape Coast.
Ashkenazi, S., Passwell, J. H., Harlev, E., Miron. D., Dagan, R., Farzan, N., Ramon, R., Majadly, F., Bryla, D. A., Karpas, A. B., Robbins, J.B., Schneerson, R. (1999). Safety and immunogenicity of Shigella sonnei and Shigella flexneri 2a O-specific polysaccharide conjugates in children. J Infect Dis 179:1565– 1568. http://dx.doi.org/10.1086/314759. DOI: https://doi.org/10.1086/314759
Bani-Yaghoub, Majid and Gautam, Raju and Shuai, Zhisheng and van den Driessche, P. and Ivanek, Renata (2012) Reproduction Numbers for Infections with Free-Living Pathogens Growing in the Environment, Journal of Biological Dynamics, Vol. 6, No. 2, pp. 923-940. DOI: https://doi.org/10.1080/17513758.2012.693206
Berhe, H. W., Makinde, O. D., and Theuri, D. M. (2019) “Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis,” Applied Mathematics and Computation, vol. 347, pp. 903–921. DOI: https://doi.org/10.1016/j.amc.2018.11.049
Cabral, Joao P. S., (2010) Water Microbiology. Bacterial Pathogens and Water, International Journal of Environmental Research and Public Health, Vol. 7, No. 10, pp. 3657-3703. DOI: https://doi.org/10.3390/ijerph7103657
CDC (2017) "General Information| Shigella – Shigellosis | Archived from the original on 16 April 2017. Retrieved 20 April 2017.
CDC (2018). “Recommendations for Managing and Reporting Shigella Infections with Possible Reduced Susceptibility to Ciprofloxacin". emergency.cdc.gov. 7 June 2018. Retrieved 16 June 2018.
CDC (2019) Antibiotic Resistance Threats in the United States, 2019 (PDF). CDC. 2019. p. 9.Archived (PDF) from the original on 10 October 2022.
Cohen, D., Ashkenazi, S., Green, M., Lerman, Y., Slepon, R., Robin, G., Orr, N., Taylor, D. N., Sadoff, J. C., Chu, C., Shiloach, J., Schneerson, R., Robbins, J.B. (1996). Safety and immunogenicity of investigational Shigella conjugate vaccines in Israeli volunteers. Infect Immun 64:4074 –4077. DOI: https://doi.org/10.1128/iai.64.10.4074-4077.1996
De Le C. V. and De Le´on C. V., (2009). “Constructions of Lyapunov functions for classics SIS, SIR and SIRS epidemic model with variable population size,” Foro-Red-Mat: Revista electr´onica de contenido matem´atico, vol. 26, no. 5, p. 1.
Ebenezer, B. G. T. and Patience, P. G. (2019), Mathematical analysis of diarrhea model with Saturated incidence rate. An open journal of mathematical sciences.
Hailay, W. B., Oluwole, D. M. & David, M. T. (2019a) Modelling the dynamics of direct and pathogens-induced dysentery diarrhoea epidemic with controls, Journal of Biological Dynamics, 13:1, 192-217, DOI: 10.1080/17513758.2019.1588400. DOI: https://doi.org/10.1080/17513758.2019.1588400
Heffernan, J., Smith, R. & Wahl, L. (2005). Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface 2 (4) 281–293. 240. DOI: https://doi.org/10.1098/rsif.2005.0042
Mani, S., Wierzba, T. and Walker, R. I. (2016). "Status of vaccine research and development for “shigella Vaccine. 34 (26): 2887–2894. doi:10.1016/j.vaccine.2016.02.075. PMID 26979135. DOI: https://doi.org/10.1016/j.vaccine.2016.02.075
Nelson, K. E. & Williams, C. (2013). Infectious disease epidemiology, Jones & 235 Bartlett Publishers.
Ojaswita, C., Tiny, M., Shedden, M. (2014). A Continuous Mathematical Model for Shigella outbreaks, American Journal of Biomedical Engineering, Vol. 4 No. 1, pp. 10-16. doi: 10.5923/j.ajbe.20140401.02.
Passwell, J. H., Harlev, E., Ashkenazi, S., Chu, C., Miron, D., Ramon, R., Farzan, N., Shiloach, J., Bryla, D. A., Majadly, F., Roberson, R., Robbins, J. B., Schneerson, R. (2001). Safety and immunogenicity of improved Shigella O-specific polysaccharide-protein conjugate vaccines in adults in Israel. Infect Immun 69:1351–1357. http://dx.doi.org/10.1128/IAI.69.3.1351-1357.2001. DOI: https://doi.org/10.1128/IAI.69.3.1351-1357.2001
Passwell, J. H., Ashkenazi, S., Harlev, E., Miron, D., Ramon, R., Farzam, N., Lerner-Geva, L., Levi, Y., Chu, C., Shiloach, J., Robbins, J. B., Schneerson, R., Israel, G. (2003). Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one- to four-year-old children. Pediatr Infect Dis J 22:701–706. http: //dx.doi.org/10.1097/01.inf.0000078156.03697.a5. DOI: https://doi.org/10.1097/01.inf.0000078156.03697.a5
Passwell, J.H., Ashkenzi, S., Banet-Levi, Y., Ramon-Saraf, R., Farzam, N., Lerner-Geva, L., Even-Nir, H., Yerushalmi B., Chu, C., Shiloach, J., Robbins, J.B., Schneerson, R. (2010). Israeli Shigella Study Group. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1-4-year-old Israeli children. Vaccine 28:2231–2235. http://dx.doi.org/10.1016/j.vaccine .2009.12.050. DOI: https://doi.org/10.1016/j.vaccine.2009.12.050
Taylor, D.N., Trofa, A.C., Sadoff, J., Chu, C., Bryla, D., Shiloach, J., Cohen, D., Ashkenazi, S., Lerman, Y., Egan, W., Schneerson, R. and Robbins, J. B. (1993). Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei (Plesiomonas shigelloides) bound to bacterial toxoids. Infect Immun 61:3678 –3687. DOI: https://doi.org/10.1128/iai.61.9.3678-3687.1993
Van den Driessche, P. & Watmough, J. (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Mathematical biosciences 180 (1), 29–48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6
VRD (1997): New strategies for accelerating Shigella vaccine development" (PDF). Weekly Epidemiological Record. 72 (11): 73–80. 14 March 1997. Archived (PDF) from the original on 19 May 2009. Retrieved 10 February 2012.
WHO (2005), Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type1 (PDF). WHO 2005. p. 2. ISBN 978-9241593304. Archived (PDF) from the original on 21 August 2017. Retrieved 20 April 2017.
WHO (2016) vaccine pipeline tracker”. World Health Organization. Archived from the original on 25, July2016. Retrieved 29 July. 2016.
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences