OPTICAL PROPERTIES OF REDUCED GRAPHENE OXIDE ON IRON OXIDE NANOPARTICLES

  • D. A. Bala
  • H. Ali
  • D. Eli
  • T. Yunana
Keywords: Fe3O4 nanoparticles, graphene, photocatalytic, nanocomposite

Abstract

In this study, we have successfully synthesized iron oxide/reduced graphene oxide (Fe3O4/rGO) nanocomposite materials using a simple, friendly, cost-effective and non-toxic chemical method at room temperature. From the results, the absorbance spectrum of Fe3O4/rGO has demonstrated a redshift to higher wavelength when compared to Fe3O4 spectrum. This indicates an increase in visible light absorption which could be attributed to the formation of chemical bond between Fe3O4 nanoparticles and rGO. The results offer a possible method to dramatically enhance the optical absorption and photocatalytic activity of materials by employing rGO nanostructures and also provide further insight into the development of ideal functionality for future optoelectronic systems.

References

Bala, D. A., Ali, H & Eli, D. (2019). Structural and morphological Properties of Reduced Graphene Oxide (rGO) on Iron Oxide Nanoparticles. Accepted for publication in Journal of the Nigerian Society of Physical Sciences.

Beydoun, D., Amal, R., Low, G. K.-C & McEvoy, S. (2000). Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. The Journal of Physical Chemistry B, 104(18): 4387-4396.

Fu, Y. S., Xiong, P., Chen, H. Q., Sun, X. Q., & Wang, X. (2012). High photocatalytic activity of magnetically separable manganese ferrite-graphene heteroarchitectures. Industrial and Engineering Chemistry Research, 51: 725-731.

Han, F., Yang, S., Jing, W., Jiang, Z., Liu, H & Li, L. (2015). A study on NEAR-uv blue photoluminescense in graphene oxide prepared by LLangmuir-Blodgett method. Applied Surface Science, 345: 18-23.

Hummers Jr, W. S & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339-1339.

Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra V & Kim. K. S. (2013). Environmental applications composites: water remediation and gas adsorption. Nanoscale, 5: 3149-3171.

Laurent, S., Forge, D., Port, M., Roch,A., Robic, C., Elst L.V & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108: 2064-2110.

Li, H. B., Gui, X. C., Zhang, L. H., Wang, S. S., Ji, C. Y., Wei, J. Q., Wang, K. L., Zhu, H. W., Wu, D. H & Cao, A. Y. (2010). Carbon nanotube sponge filters for trapping nanoparticles and dye molecules from water. Chemical Communications, 46: 7966-7968.

Liu, X. J., Pan, L. K., Lv, T., Zhu, G., Lu, T., Sun, Z & Sun, C. Q. (2011). Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Advances, 1: 1245-1249.

Liu, Y. S; Jiang, X. Q, Li, B. J, Zhang, X. D, Liu, T. Z, Yan, X. S., Ding, J., Cai, Q and Zhang, J. M. (2014). Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. Journal of materials chemistry A, 2: 4264-4269.

Maiti, U. M., Lee,W. J., Lee, J. M., Oh, Y., Kim, J. Y., Kim, J. E., Shim, J. M., Han, T. H & Kim. S. O (2014). 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced Materials, 26(1): 40-66.

Metin, O., Aydog S & Meral, K. (2014). A new route for the synthesis of graphene oxide–Fe3O4 (GO-Fe3O4) nanocomposites and their schottky diode applications. Journal of Alloys and Compounds, 585: 681-688.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306: 666-669.

Parades, J. I., Villar-Rodil, S., Martinez-Alonso, A & Tascon J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24 (19): 10560-10564.

Phan, T. D. N., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S. W., Chung, J. S & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photo catalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170: 226- 232.

Shinen, M. H., Alsaati, S. A. A & Razooq F.Z. (2008). Preparation of high transmittance TiO2 thin films by Sol-gel techniques as antireflection coating. Journal of physics: conference series, 1032,012018.

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8): 1178-1271.

Song, X., & Gao, L. (2007). Fabrication of bifunctional titania/silicacoated magnetic spheres and their photocatalytic activities. Journal of the American Ceramic Society, 90(12): 4015–4019.

Wang, Y. Bai, Y. J., Li, X., Feng Y.Y & Zhang, H. J. (2013). A general strategy towards encapsulation of nanoparticles in Sandwiched graphene sheets and the synergic effect on energy story. Chemistry–A European journal, 19: 3340-3347.

Wu, Q. H., Feng, C., Wang, C., & Wang, Z. (2013). A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids and Surfaces B: Biointerfaces, 101: 210-214.

Published
2023-04-07
How to Cite
BalaD. A., AliH., EliD., & YunanaT. (2023). OPTICAL PROPERTIES OF REDUCED GRAPHENE OXIDE ON IRON OXIDE NANOPARTICLES. FUDMA JOURNAL OF SCIENCES, 3(2), 226 - 231. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1507