Array
Abstract
Amid the possible photovoltaic devices based on semiconductor oxides as active layer is a cuprous oxide (Cu2O). This oxide semiconductor displays many captivating appearances useful for photovoltaic production such as non-toxicity, low cost, high mobility and scattering length of minority carriers, direct energy gap and high absorption coefficient. In this paper, we report our study and fabrication of Cu2O thin films fabricated by partial thermal oxidation at 950 and use as one electrode while pure copper foil is used as counter electrode. The Pec device encloses in translucent CD cover with two different electrodes; the electrode and the counter electrode, aluminum container filled up with a cotton wool with the samples, and the electrolyte. The current-voltage characteristic curves were plotted, and the maximum power points Pmax was also noted. An open circuit voltage of 86mV, a short circuit current Isc of 960 a fill factor FF of 0.4151 And the maximum power point of were acquired correspondingly
References
Abbott, D. (2010). Keeping the Energy Debate Clean and How Do We Supply the World’s Energy Needs Proc. IEEE, 98, 42–66.
Becquerel, E. (1839). Memoire Sur Les Effets Électriques Produits Sous L’influence Des Rayons Solaires Comptes rendus, 9, 561–567.
International Energy Agency. Key World Energy Statistics; (2014).
Lewis, N. S., Nocera, D. G. (2006). Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A, 103, 15729–15735.
Mcglade, C., Ekins, P. (2015). The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 °C”. Nature, 517, 187–190.
Mittiga, A., Salza, E., Sarto., Tucci, F, M. and Vasanthi, R. (2006). Heterojunction Solar Cell with 2% Efficiency based on a Cu2O Substrate Applied physics letters, 88: 163 502-1 – 163502-2.
Musa, A.O. and Yunusa, A., (2013). Fabrication and study of the electrical properties of Cu-Cu2O photoelectrochemical solar cell, Bayero Journal of Physics and Mathematical science/vol. 5(1)pp 37-45.
Musa A.O, (2010). “Principles of photovoltaic Energy Conversion”, Hafsat Education Enterprises.
Musa, A. O., Akomolafe, T. and Carter, M. J. (1998). Production of Cu2O Solar Cell Material, by Thermal Oxidation and Study of its Physical and Electrical Properties. Solar energy materials and solar cells, Pergamon, 51, 3-4.
Noguet, C., Tapiero, M., Schwab, C., Zielinger, J.P., Trivich, D., Komp, R.J., Wang, E.Y. and Wang, K. (1977). Cuprous Oxide as a Photovoltaic Converter. 1st European community Photovoltaic conference proc. P. 1170.
Porat, O and Riess, I. (1995) Solid State Ionics 81 29.
Roos. A and Karlson, B. (1983). Solar Energy Mater. 7 467Ð480.
Roos, A., Chibuye, T., and Karlson. B. (1983), Solar Energy Mater. 7 453Ð465.
Stephens, G. L., Li, J., Wild,, M., Clayson, C. A., Loeb, N., Kato, S., L’Ecuyer, T., Stackhouse., P. W., Lebsock, M., Andrews, T. (2012). An Update on Earth’s Energy Balance in Light of the Latest Global Observations. Nat. Geosci., 5, 691–696.
US Geological Survey. Mineral Commodity Summaries (2014). U.S. Geological Survey. 2014, No. 703, 34–35.
Wadia, C., Alivisatos, A., and Kammen, P, D. M. (2009). Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment. Environ. Sci. Technol., 43, 2072–2077.
Walter, H.B. (1951). The Copper Oxide Rectifier. Reviews of Modern Physics, 23, 203 -212.
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences