RENIN-INHIBITORY BIOACTIVE PEPTIDES WITH ANTIHYPERTENSIVE PROPERTY: A REVIEW

  • Sanusi Bello Mada Department of Biochemistry, Ahmadu Bello University Zaria-Nigeria
  • Chizoba Paul Ugwu Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
  • Muawiya Musa Abarshi
  • Muhammad Auwal Saliu
Keywords: Key words: Hypertension; Bioactive peptides; Renin inhibition; Mechanism of action.

Abstract

Blood pressure is regulated by the renin angiotensin aldosterone system (RAAS). Renin-catalyzed conversion of angiotensinogen to angiotensin I is the rate-limiting step of the RAAS pathway, which arguably makes renin a better target for prevention, treatment and management of hypertension than Angiotensin-Converting Enzyme (ACE). Hydrolysis of food proteins releases bioactive peptides that can interact with receptors, enzymes and molecules in the organism to promote health. Several studies have shown that these bioactive peptides could be exploited for management of hypertension which is a major risk factor for cardiovascular diseases (CVDs). Antihypertensive peptides are bioactive peptides derived from plant and animal sources with inherent potential to ameliorate hypertension by different mechanism including scavenging of free radicals, reduced cholesterol level, inhibit angiotensin-converting enzyme (ACE) activity and renin production. Although there was sufficient information on ACE-inhibitory and antioxidative peptides while information on the potential role of renin-inhibitory peptides against hypertension is limited. Thus, herein the present review primarily used ISI, SCOPUS and PubMed indexed journals containing experimental reports to elucidate the potential role of bioactive peptides against antihypertensive effect via renin inhibition.

 

Key words: Hypertension; Bioactive peptides; Renin inhibition; Mechanism of action.

References

References

Addara, L., Bensouicib, C., Zenniaa, S.S.A., Harounc, S.B. & Matia, A. (2019). Antioxidant, tyrosinase and urease inhibitory activities of camel αS-casein and its hydrolysate fractions, Small Ruminant Res., 173:30–35.

Aguilar-Toalá, J., Santiago-López, L., Peres, C., Peres, C., Garcia, H., Vallejo-Cordoba, B., González-Córdova, A. and Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci., 100:65–75.

Agyei, D., Ongkudon, C.M., Wei, C.Y., Chan, A.S. and Danquah, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process, 98:244–256.

Aluko, R.E. (2019) Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J. Food Biochem., 43:e12648.

Alvarado Y., Muro, C., Illescas, J., Díaz, M. and Riera, F. (2019). Encapsulation of Antihypertensive Peptides from Whey Proteins and Their Releasing in Gastrointestinal Conditions. Biomolecules, 9:164.

Ames, M.K., Atkins, C.E. and Pitt, B. (2019). The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med,. 33:363–382.

Bader, M. (2010). Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Ann. Rev. Pharmacol. Toxicol., 50(1): 439-465.

Bader , M. and Ganten, D. (2008). Update on tissue renin–angiotensin systems. J. Mol. Med., 86(6):615-621.

Bamdad, F., Shin, S.H., Suh, J., Nimalaratne, C. and Sunwoo, H. (2017). Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysates Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes. Molecules, 22:609.

Basilicata, M.J., Pepe, G., Adesso, S., Ostacolo, C., Sala, M., Sommella, E., Scala, M.C., Messore, A., Autore, G., Marzocco, S. and Campiglia, P. (2018). Antioxidant Properties of Buffalo-Milk Dairy products: A β-Lg Peptide Released after Gastrointestinal Digestion of Buffalo Ricotta Cheese Reduces Oxidative Stress in Intestinal Epithelial Cells. Int. J. Mol. Sci., 19:1955.

Beuschlein, F. (2013). Regulation of aldosterone secretion: from physiology to disease. J. Endocrinol., 168(6):R85-R93.

Bleakley, S., Hayes, M., O’Shea, N., Gallagher, E. and Lafarga, T. (2017). Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods, 6:108.

Briet, M. and Schiffrin, E.L. (2010). Aldosterone: Effects on the kidney and cardiovascular system. Nat. Rev. Nephrol.. 6(5):261-273.

Capriotti, A.L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R.Z. and Lagana, A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compost. Anal., 44:205–213.

Chaudhari, D.D., Singh, R., Mallappa, R.H., Rokana, N., Kaushik, J.K., Bajaj, R., Batish, V.K. and Grover, S. (2017). Evaluation of casein & whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. Indian J. Med. Res., 146:409-419.

Chen, Y., Meng, L., Shao, H. and Yu, F. (2013). Aliskiren vs. other antihypertensive drugs in the treatment of hypertension: A meta-analysis. Hypertens. Res., 36:252–261.

Ciau-Solis, N.A., Acevedo-Fernandez, J.J. and Betancur-Ancona, D. (2018) In vitro renin-angiotensin system inhibition and in vivo antihypertensive activity of peptide fractions from lima bean (Phaseolus lunatus L.). J. Sci. Food Agric., 98, 781–786.

Daliri, E.B., Deog, H.O. and Byong, H.L. (2017). Bioactive Peptides. Foods, 6:32.

Daliri, E.B., Lee, B.H. and Oh, D.H. (2016) Current perspectives on antihypertensive probiotics. Probiotics. Antimicrob. Proteins, 9(2): 91-101 https://doi.org/10.1007/s1260 2-016-9241-y.

De-Mello, W.C. (2015) Chemical communication between heart cells is disrupted by intracellular renin and angiotensin ii: implications for heart development and disease. Front. Endocrinol. (Lausanne), 6:1-6.

De-Mello, W.C. and Frohlich, E.D. (2014). Clinical perspectives and fundamental aspects of local cardiovascular and renal Renin-Angiotensin systems. Front. Endocrinol. (Lausanne), 5:16.

Duprez, D.A. (2006). Role of renin-angiotensinâ€aldosterone system in vascular remodeling and inflammation: A clinical review. J. Hypertens., 24:983–991.

Dzau, V.J., Bernstein, K., Celermajer, D, et al., (2001). The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am. J. Cardiol., 88(9A):1L-20L.

Fernández-Musoles, R., Manzanares, P., Burguete, M.C., Alborch, E. and Salom, J.B. (2013). In vivo angiotensin I-converting enzyme inhibition by long-term intake of antihypertensive lactoferrin hydrolysate in spontaneously hypertensive rats. Food Res. Int. 54:627–632.

Funder, J.W., Pearce, P.T., Smith, R. and Campbell, J. (1989). Vascular type I aldosterone binding sites are physiological mineralocorticoid receptors. Endocrinology, 125(4):2224-2226.

Funder, J.W., Pearce, P.T., Smith, R. and Smith, A.I. (1998). Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science, 242(4878):583-585.

García-Tejedor, A., Castelló-Ruiz, M., Gimeno-Alcañíz, J.V., Manzanares, P. and Salom, J.B. (2015). In vivo antihypertensive mechanism of lactoferrin-derived peptides: Reversion of Angiotensin-I- and Angiotensin II-induced hypertension in wister rats. J. funct. Foods, 15:294-300.

Ghazi , L. and Drawz, P. (2017). Advances in understanding the renin-angiotensin-aldosterone system (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Res.,1(3):297.

Girgih, A.T., He, R. and Aluko, R.E. (2014). Kinetics and molecular docking studies of the inhibitions of angiotensin converting enzyme and renin activities by hemp seed (Cannabis sativa L.) peptides. J. Agric. Food Chem., 62:4135–4144.

Girgih, A.T., Udenigwe, C.C., Li, H., Adebiyi, A.P. and Aluko, R.E. (2011). Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J. Am. Oil Chem. Soc., 88:1767–1774.

Guang, C., Phillips, R.D., Jiang, B., Milani, F. (2012). Three key proteases—Angiotensin-I-converting enzyme (ACE), ACE2 and Renin–within and beyond the renin-angiotensin system. Arch. Cardiovasc. Dis,.105:373–385.

Gul, W., Farooq, N., Anees, D., Khan, U. and Rehan, F. (2015). Camel Milk: A Boon to Mankind. Int. J. Res. Stud. Biosci., 3:23-29.

Hall, J.E. and Guyton, A.C. (2010). Role of the kidneys in long-term control of arterial pressure and in hypertension: the integrated system for arterial pressure regulation. Guyton and Hall Textbook of Medical Physiology. Philadelphia, PA: Elsevier Health Sciences 2010:213-228.

Harada, E., Yoshimura, M., Yasue, H., et al., (2001). Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation, 104(2):137-139.

He, R., Malomo, S.A., Alashi, A., Girgih, A.T., Ju, X. and Aluko, R.E. (2013). Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. J. Funct. Foods, 5:781–789.

He, R., Yang, Y., Wang, Z., Xing, C., Yuan, J., Wang, L., Udenigwe, C., Ju, X. (2019). Rapeseed protein-derived peptides, LY, RALP, and GHS, modulates key enzymes and intermediate products of renin–angiotensin system pathway in spontaneously hypertensive rat. npj Sci. Food, 3:1.

Hernandez, L.M.R., de-Mejia, E.G. (2017). Bean peptides have higher in silico binding affinities than Ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 like-1. Peptides, 90:83-89.

Hernández-Ledesma, B., Contreras, M., and Recio, I (2011) Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci., 165:23–35.

Hernandez-Ledesma, B., Garcia-Nebot, M.J., Fernandez-Tome, S., Amigo, L. and Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. Int. Dairy J., 38:82-100.

Imig, J.D. (2004). ACE inhibition and bradykinin-mediated renal vascular responses: EDHF Involvement. Hypertension, 43(3): 533-5.

Jaisser, F. and Farman, N. (2015). Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol. Rev. 68(1):49-75.

Kaspar, A.A. and Reichert, J.M. (2013). Future directions for peptide therapeutics development. Drug Discov. Today, 18(17-18):807–817.

Korczek, K., Tkaczewska, J. and Migdał, W. (2018). Antioxidant and Antihypertensive Protein Hydrolysates in Fish products- a Review. Czech J. Food Sci., 36 (3): 195–207.

Koyama, M., Hattori, S., Amano, Y., Watanabe, M. and Nakamura, K. (2014). Blood pressure -lowering peptides from neo-fermented buckwheat sprouts: A new approach to estimating ACE-inhibitory activity. PLoS ONE, 9, e105802.

Kumar, D., Chatli, M.K., Singh, R., Mehta, N. and Kumar, P. (2016). Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Sci. Technol. 96:391-404.

Lafarga, T., O'Connor, P. and Hayes, M. (2014). Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 59:53–62.

Lafarga, T., Rai, D.K., O’Connor, P. and Hayes, M. (2015) A bovine fibrinogen-enriched fraction as a source of peptides with in vitro renin and angiotensin-I-converting enzyme inhibitory activities. J. Agric. Food Chem., 63:8676–8684.

Lafarga, T., Rai, D.K., O’Connor, P. and Hayes, M. (2016). Generation of bioactive hydrolysates and peptides from bovine hemoglobin with in vitro renin, angiotensin-I-converting enzyme and dipeptidyl peptidase-IV inhibitory activities. J. Food Biochem.,40:673–685.

Lammi, C., Zanoni, C., Calabresi, L. and Arnoldi, A. (2016). Lupin protein exerts cholesterol-lowering effects targeting PCSK9: From clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. J. Funct. Foods, 23:230-240.

Lassoued, I., Mora, L., Barkia, A., Aristoy, M., Nasr, M. and Toldra, F. (2015). Bioactive peptides identified in thorn-back ray skin’s gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. J. Proteomics, 128:8–17.

Li, H. and Aluko, R.E. (2010). Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J. Agric. Food Chem., 58:11471–11476.

Li, H., Prairie, N., Udenigwe, C.C., Adebiyi, A.P., Talappia, P.S., Aukeema, H.M., Jones, P.J., Aluko, R.E. (2011). Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J. Agric. Food Chem., 59:9854–9860.

Lin, H., Alashi, A.M., Aluko, R.E., Pan, B.S. and Chang, Y. (2017). Antihypertensive properties of tilapia (Oreochromis spp.) frame and skin enzymatic protein hydrolysates. Food Nutr. Res. 61:1, 1391666, DOI:10.1080/16546628.2017.1391666.

Lin, K., Zhang, L., Han, X., Xin, L., Meng, Z., Gong, P. and Cheng, D. (2018). Yak milk casein as potential precursor of angiotensin-I-converting enzyme inhibitory peptides based on in silico proteolysis. Food chem., 254:340-347.

Mada, S.B., Reddi, S., Kumar, N., Kumar, R., Kapila, S., Kapila, R., Trivedi, R., Karvande, A. and Ahmad, N. (2017a). Antioxidative peptide from milk Exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition, 43–44:21–31.

Mada, S.B., Reddi, S., Kumar, N., Kapila, S. and Kapila, R. (2017b).Protective effects of caseinderived peptide VLPVPQK against hydrogen peroxide–induced dysfunction and cellular oxidative damage in rat osteoblastic cells. Hum. Exp. Toxicol., 36(4) 1-14:096032711667829. https ://doi.org/10.1177/09603 27116 67829 3.

Mada, S.B., Reddi, S., Kumar, N., Vij, R., Yadav, R., Kapila, S. and Kapila R (2018). Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. PharmaNutrition 6:169–179.

Mada, S.B, Ugwu, C.P. and Abarshi, M.M. (2019). Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int. J. Pept. Res. Ther. 19(4):1573-3149.

Martin, M., Kopaliani, I., Jannasch, A., Mund, C., Todorov, V., Henle, T. and Deussen, A. (2015). Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiol. 215, 167–176.

Marzolla, V., Armani, A., Feraco, A., De-Martino, M.U., Fabbri, A., Rosano, G. and Caprio, M. (2014). Mineralocorticoid receptor in adipocytes and macrophages: a promising target to fight metabolic syndrome. Steroids, 91:46-53.

Marzolla, V., Armani, A., Zennaro, M.C., Cinti, F., Mammi, C., Fabbri, A., Rosano, G.M., Caprio, M. (2012). The role of the mineralocorticoid receptor in adipocytes biology and fat metabolism. Mol. Cell Endocrinol. 350(2):281-288.

Mirzaei, M., Mirdamadi, S., Ehsani, M.R. and Aminlari, M. (2018). Production of antioxidant and ACE-inhibitory Peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. J. food drug anal., 26 (2):696-705.

Mohanty, D.P., Mohapatra, S., Misra, S. and Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health-A review. Saudi J. Biol. Sci., 23(5):577-583.

Nawaz, K.A.A., David, S.M., Murugesh, E., Thandeeswaran, M., GopikrishnanKiran, K., Mahendran, R. et al. (2017). Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanuscajan). Phytomedicine, 09:013.

Onuh, J.O., Girgih, A.T., Aluko, R.E. and Aliani, M. (2013). Inhibitions of renin and angiotensin converting enzyme activities by enzymatic chicken skin protein hydrolysates. Food Res. Int., 53:260–267.

Onuh, J.O., Girgih, A.T., Malomo, S.A., Aluko, R.E., Aliani, M. (2015). Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. J Funct Foods, 14:133–143.

Onuh, J.O., Girgih, A.T., Nwachukwu, I.D., Levari-Shariati, S., Raj, P., Netticadan, T. and Aliani, M. (2016). A metabolomics approach for investigating urinary and plasma changes in spontaneously hypertensive rats (SHR) fed chicken skin protein hydrolysates diets. J. Funct. Foods, 22:20–33.

Pachaiappan, R., Tamboli, E., Acharya, A., Su, C., Gopinath, S.C.B., Chen, Y., Velusamy, P. (2018). Separation and identification of bioactive peptides from stem of Tinospora cordifolia (Willd) Miers. PLoS ONE 13(3): e0193717.

Palaniswamy, M., Angayarkanni, J., Nandhini, B. (2012). Angiotensin converting enzyme inhibitory activity and antioxidant properties of goat milk hydrolysates. Int. J. Pharm. Pharm. Sci., 4:367-370.

Panth, N., Paudel, K.R., Parajuli, K. (2016). Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease–A review. Adv. Med., 2016;2016:9152732.doi: 10.1155/2016/9152732.

Paudel, K.R., Lee, U.W., Kim, D.W. (2016). Chungtaejeon, a Korean fermented tea, prevents the risk of Atherosclerosis in rats fed a high-fat atherogenic diet. J. Integr. Med. 14(2):134-142.

Seelinger, E., Wronski, T., Ladwig, M. et al., (2005). The “body fluid pressure control system†relies on the renin-angiotensin-aldosterone system: balance studies in freely moving dogs. Clin. Exp. Pharmacol. Physiol., 32(5–6):394-399.

Udenigwe, C.C., Li, H., Aluko, R.E. (2012). Quantitative structure–activity relationship modeling of renin-inhibiting dipeptides. Amino Acids, 42:1379–1386.

Udenigwe, C.C., Lin, Y.S., Hou, W.C., Aluko, R.E. (2009). Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods, 1:199–207.

Ugwu, C.P., Abarshi, M.M., Mada, S.B., Sanusi, B. and Nzelibe, H.C. (2019). Camel and Horse Milk Casein Hydrolysates Exhibit Angiotensin Converting Enzyme Inhibitory and Antioxidative Effects In vitro and In silico. Int. J. Pept. Res. Ther., 19(4):1573-3139.

Ullian, M.E. and Fine, J.J. (1994). Mechanisms of enhanced angiotensin. J. Cell Physiol. 161(2):201-208.

Ullian, M.E., Hutchison, F.N., Hazen-Martin, D.J. and Morinelli, T.A. (1993). Angiotensin II-aldosterone interactions on protein synthesis in vascular smooth muscle cells. Am J Physiol. 264:C1525-C1531.

Ullian, M.E., Schelling, J.R., Linas, S.L. (1992). Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension, 20 (1):67-73.

Vincent-Onabajo, G.O., Adaji, J.O., and Umeonwuka, C.I. (2017). Prevalence of undiagnosed Hypertension among traders at a regional market in Nigeria. Ann. Med. Health Sci. Res. 7: 97-101.

Wang, X., Chen, H., Fu, X., Li, S., Wei, J. (2017). A novel antioxidant and ace inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT-Food Sci. Technol.,75:93-99.

Yahya, M.A., Alhaj, O.A. and Al-Khalifa, A.S. (2017). Antihypertensive effect of fermented skim camel (Camelus dromedaries) milk on spontaneously hypertensive rats. Nutr. Hosp. 34(2):416-421.

Yang, Y., He, H., Wang, F., Ju, X., Yuan, J., Wang, L., Aluko, R.E. and He, R. (2017). Transport of ACE and renin dual inhibitory peptides LY, RALP and TF across CaCo-2 cell monolayers. J. Funct. Foods 35:303-314.

Yu, Z., Yin, Y., Zhao, W., Chen, F. and Liu, J. (2014). Antihypertensive effect of angiotensin converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin-angiotensin system. J. Agric. Food Chem. 62:912–917.

Zou, T., He, T., Li, H., Tang, H. and Xia, E. (2016). The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 21:72.

Published
2020-07-03
How to Cite
Bello MadaS., Paul UgwuC., Musa AbarshiM., & SaliuM. A. (2020). RENIN-INHIBITORY BIOACTIVE PEPTIDES WITH ANTIHYPERTENSIVE PROPERTY: A REVIEW . FUDMA JOURNAL OF SCIENCES, 4(2), 478 - 489. https://doi.org/10.33003/fjs-2020-0402-140

Most read articles by the same author(s)