• YAU MUSA Department of chemistry Federal University Dutse
  • Y. A. Adamu
  • S. Nasir
  • A. A. Olaleye
  • A. H. Sani
Keywords: Gardenia Jasminoides, Polycyclic Aromatic Hydrocarbons, Accumulation, Soil


In this study, greenhouse pots experiment was conducted to determine the phytoremediation potential of the Gardenia jasminoides plant. The plant was transplanted into 4.0 kg soil spiked with three different concentrations of the polycyclic aromatic hydrocarbons (PAHs); 1600 mg Acenaphthene (ACN), 2000 mg naphthalene (NAP) and 2400 mg phenanthrene (PHE) respectively. The Plant was allowed to grow under greenhouse conditions in triplicates with sufficient watering for ten weeks in pots containing soil contaminated with the three PAHs and control. At the end of the experiment, the levels of PAHs in the extracts of soil, roots and shoots were analyzed using high performance liquid chromatography system from Shimadzu equipped with a UV-VIS detector (SPD-20-AV). The results showed that, bioconcentration factor (BCF) values in control Experiment are 0.74 for ACN, 0.57 and 1.64 for NAP which is greater than one. Translocation factors (TF) values in control experiment are 1.23 for ACN, 1.0 for PHE and 1.20 for NAP. BCF values are greater than one at all the three different spiked experiment, 8.66 for ACN, 2.30 for PHE and 4.31 for NAP. The results also showed that the Plant was able to remove NAP with TF=2.32, ACN with TF=2.94 and PHE with TF=3.62 from contaminated soils. High values of one and above for the BCF and TF indicates high accumulation of the PAHs in the shoots of the plant. The plant may therefore be best described as phytoextractor of naphthalene, acenaphthene and phenanthrene in the soil.


Abdulazeez, T. L. (2017). Polycyclic aromatic hydrocarbon. A review, Cognent Environmental Science, 3:1, 1339841. DOI:

Adamu, Y. A. (2019). Phytoremediation of soil contaminated with Cr, Cd and Cu by Gardenia Anapetes. Dutse Journal of Pure and Applied Science (DUJOPAS), 5: 284-285.

Asma Yaqoab, faiz Ul Hassan Nasim, Ayesha Sumreen, Nayla Munawar, Muhammad Azhar Zia, Muhammad Shafique Choulhary and Muhammad Ashraf (2019). Current Scenario of Phytoremediation: progresses and limitations. International Journal of Biosciences, 14 (3):191-206.

Atarfar, Z., Mesdaghinia, A. R., Nouri, J., Homaea, M., Yunesian, M., Ahmadimoghaddam, M. and Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metals concentration. Envirmental monitory Assesment, 160(1-4):83-96 DOI:

Balasubramaniyam, A. (2015). The influence of plants in Remediation of Petroleum hydrocarbon contaminated sites.Pharm anal Chem Open acess 1:105. Doi:10.4172/2471-2698.10000105 DOI:

Binet, P., Portal, J. M. and Leyval, C. (2000). Fate of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere and Mycorrhizosphere of ryegrass, plant soil, 227: 207-213.

Chen, Z. X., Ni, H. G., Jing, X., Chang, W. J., Sun, J. L. and Zeng, H. (2015). Plant uptake Translocation and return of polycyclic aromatic hydrocarbon via find root branch orders in a subtropical forest ecosystem. Chemosphere, 131: 192-200. chemosphere. 2015.03.045. DOI:

Chunrong, J., Xianqiang, F., Larry, S. and Robert, R. (2020). Characterizing community exposure to atmospheric polycyclic aromatic hydrocarbons (PAHs) in the Memphis Tri-State Area. Memphis PAHs Study Final Report, pp: 1. Doi; 10.1016/j.scitotenv.2019.133971.

Gao. Y. and Ling, W. (2006). Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biol. Ferhl. Soils, 42: 387-394. DOI:

Giridhar, P. and Krishna, P. (2010). Polycyclic aromatic hydrocarbons in Urban Runoff- sources, Sinks and Treatment: A Review. ILLINOIS Institute of Technology, Prepared for: Dupage River Salt Creek Workgroup, Naperville.

Gupte, A., Archama, T., Helina, P., Darshan, R. and Shilpa, G. (2016). Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs). A Perspective. The Open Biotechnology journal, 10: 363 – 378. Doi: 10:2174/187407070161. DOI:

Haihua, J., Qi, W., Nana, Z., Bo, J., Xuliang, Z. and Zhihui B. (2017). Distribution and sources of polycyclic aromatic hydrocarbons in soil around a chemical plant in Shanxi, Chinablic. Int. J. Environ. Res. Public Health, 14:1198. https://doi.oeg/3390/ijerph14101198. DOI:

Hussein, I. A. and Mona, S. M. M. (2016). A review on polycyclic aromatic hydrocarbons: sources, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25:107 123. DOI:

Itodo, A.U., Shaato, R., Wuana, R. A. and Emmanual, A. Y. (2020) Effect of phytoremediation on PAHs levels of Agricultural Soil around Mechanic Village Wukari, Nigeria. Journal of Environmental Analytical Chemistry, 7:2.

Jung-Hwan, K., Yerin, J. and Pil-Gon, K. (2019). Inhalation risk assessment of naphthalene emitted from deodorant balls in public toilets. Environmental Health and Toxicology, 34(2): 8. DOI:

Karishma, H., Raza, R., Haque, S. B., Subhash, M., Mohammad, G. I., Mirzanur, R., and Farhazliaquat, H. (2018). Monitoring and risk analysis of PAH in the environment. Handbook of Environmental Materials Management, 1-35. DOI:

Khan, N. T., Jameel, N. and Khan, M. J. (2018). A Brief overview of Contaminated Soil Remediation Methods. Biotechnolind J,14 (4): 171.

Khanitta, S., Waraporn, C. and Hung, L. (2014). Phytoremediation of anthracene and fluoranthene contaminated soil by Cuffaacutarnula. Maejo. Int. J. Sci. Technol, 8 (03): 221-231.

Mang, L., Zhang-Zhi, Z., Jing-Xiu, W., Min, Z., Yu-Xin, X. and Xue-Tiao, W. (2014). Interaction of Heavy Metals and Pyrene on their fates in Soil and Tall Fescue (Festuca Arundinacea). Environ. Sci. Technol, 48, 11581165

Massino, F., Danato, V. and Nuazio, F. (2020). Agronomic approaches for characterization, remediation, and monitoring of contaminated sites. Agronomy, 10:1335. doi:10.3390/agronomy10091335. DOI:

Maurizio, C. (2020). A Review of the performance of woody and herbaceous ornamental Plants for phytoremediation in urban areas. Iforest. Bio. geoscience and Forestry, 13(2):139-151. DOI:

Menzie, A.C., Potoek, B. B. and Santodonatp J. (1992). Polycyclic Aromatic Hydrocarbons in Air, Soil and water. Environ Sci. Technol, 26:1278 -1284. DOI:

Merkel, N., Schultze – Kraff, R. and Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum contaminated soils. Water Air Soil pull, 165:195 – 209. DOI:

Mojiri, A., Zhor, J. L., Ohashi, A., Ozaki, N. and Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sourses, their effects and treatments. Sci. Total Environ, 2019:133971. Doi; 10.1016/j.scitotenv.2019.133971. DOI:

Muhammad, H. S., Shafaqat, A., Muzammal, R., Mirza, H., Muhammad, R., Sana, I. F., Muhammad, I., Basmah, M. A., Tagweed, S. A. and Sameer, H. Q. (2020). Jute: A review. Plants, 9:258. 9020258. DOI:

Naidoo, G. and Naidoo, K. (2018). Uptake and accumulation of polycyclic aromatic hydrocarbons in the mangroves Avicennia Marina and Rhizophora Mucronata. Environ Sci Pollut Res, 25: 28875-2883. DOI:

Napoli, M., Stefano, C. G., Ada, D., Camillo, A. Z. and Simone, O. (2019). Phytoextraction of Copper from contaminated soil using Arabal and vegetable Crops. Chemosphere, 210: 122-129. DOI:

Oishi, Y. (2018). Comparison of moss and pine needles as bio indicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environmental Pollution, 234: 330–338. DOI:

Patel, A. B., Singh. S., Patel, A., Jan, K., Amin, S., and Madamwar, D. (2020). Synergistic Biodegradation of Phenanthrene and fluoranthene by mixed bacterial culture. Bioresour. Technol, 284:115 – 120. DOI:

How to Cite