MOTION AROUND THE EQUILIBRIUM POINTS IN THE PHOTOGRAVITATIONAL R4BP UNDER THE EFFECT OF CIRCUMSTELLAR BELT
Abstract
In the present work, we study numerically the motion of an infinitesimal fourth body near the equilibrium points (EPs) of the photogravitational restricted four-body problem (Lagrangian configuration) under the effect of circumstellar belt. We consider the case where three the bodies of masses and (primaries) are sources of radiation as well as enclosed by a circumstellar belt and two of the primaries, and, have equal masses () and equal radiation factors () while the dominant primary body is of mass Firstly, these equilibria are determined and then the influence of the system parameters on their positions and stability is performed. In addition, the numerical exploration is performed using the Ross 104-Ross775a-Ross775b stellar system to compute the locations of the equilibria and the eigenvalues of the characteristic equation. For this system where the value of the mass parameter is beyond Routh’s value, we observe that they may be ten (four collinear and six non-collinear) or eight (two collinear and six non-collinear) EPs depending on the mass of the circumstellar belt. The linear stability of each equilibrium point is also studied and it is found that in the case where ten equilibria exist, the new collinear point, is always linearly stable while the other nine equilibria are always linearly unstable. In the case where eight equilibria exist, all of them are always linearly unstable. The zero velocity surfaces for the stellar system are drawn and regions of motion are analyzed for increasing values of the mass belt.
References
Alvarez-Ramírez, M. and Vidal, C. (2009): Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng. 181360, 1–23 DOI: https://doi.org/10.1155/2009/181360
Ansari, A. (2016): The photogravitational circular restricted four-body problem with variable masses. Journal of Engineering and Applied Science 3(2): 30–38. DOI: https://doi.org/10.5455/jeas.2016110105
Baltagiannis, A.N. and Papadakis, K.E. (2011): Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 DOI: https://doi.org/10.1142/S0218127411029707
Baltagiannis, A.N. and Papadakis, K.E. (2013): Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 DOI: https://doi.org/10.1016/j.pss.2012.11.006
Ceccaroni, M. and Biggs, J. (2012): Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 DOI: https://doi.org/10.1007/s10569-011-9391-x
Gascheau, G. (1843): Examen d’une classe d’équations différentielles et applications à un cas particulier du problème des trois corps. C. R. Acad. Sci. 16, 393—394
Govind, M.; Pal, A.K.; Alhowaity, S.; Abouelmagd, E.I. and Kushvah, B.S. (2022): Effect of the Planetesimal Belt on the Dynamics of the Restricted Problem of 2 + 2 Bodies. Appl. Sci., 12, 424. https://doi.org/10.3390/app12010424 DOI: https://doi.org/10.3390/app12010424
Greaves, J.S., Holland, W. S., Moriarty-Schieven, G., Jenness, T., Dent, W. R., Zuckerman, B., Mccarthy, C., Webb, R. A., Butner, H. M., Gear, W. K. and Walker, H. J. (1998): A dust ring around Eridani: Analog to the young Solar System, Astrophys. J. 506, 133–137 DOI: https://doi.org/10.1086/311652
Jiang, I.G and Yeh, L.C. (2004): The drag-induced resonant capture for Kuiper Belt objects, Mon. Not. R. Astron. Soc. 355, 29–32 DOI: https://doi.org/10.1111/j.1365-2966.2004.08504.x
Jiang, I.G. and Yeh L. C. (2006): On the Chermnykh-like problem: The equilibrium points, Astrophys. Space Sci. 305, 341–345 DOI: https://doi.org/10.1007/s10509-006-9065-4
Jiang, I. G. and Yeh, L. C. (2014): Galaxies with super massive binary black holes: (I) A possible model for the centers of core galaxies, Astrophys. Space Sci. 349, 881–893. DOI: https://doi.org/10.1007/s10509-013-1695-8
Kishor, R. and Kushvah, B. S. (2013): Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc, Mon. Not. R. Astron. Soc. 436, 1741–1749 DOI: https://doi.org/10.1093/mnras/stt1692
Miyamoto, M. and Nagai, R. (1975); Three-dimensional models for the distribution of mass in
galaxies, Publ. Astron. Soc. Jpn. 27, 533–543 (1975).
Moulton, F.R. (1900): On a class of particular solutions of the problem of four bodies. Am. J. Math. 1, 17–29 DOI: https://doi.org/10.1090/S0002-9947-1900-1500520-3
Murray, C. and Dermott, S. (1999): Solar System Dynamics. Cambridge University Press, Cambridge DOI: https://doi.org/10.1017/CBO9781139174817
Musielak, Z. and Quarles, B. (2017): Three body dynamics and its applications to exoplanets. In Springer Briefs in Astronomy, Springer, Cham, Switzerland DOI: https://doi.org/10.1007/978-3-319-58226-9
Osorio-Vargas, J. E., Dubeibe, F. L. and Gonzalez, G. A. (2020): Orbital dynamics in the photogravitational restricted four-body problem: Lagrange configuration, Physics Letters A 384 126305. DOI: https://doi.org/10.1016/j.physleta.2020.126305
Papadouris, J.P. and Papadakis, K.E. (2013): Equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 344, 21–38 DOI: https://doi.org/10.1007/s10509-012-1319-8
Schwarz, R., Süli, À., Dvorac, R. and Pilat-Lohinger, E. (2009a): Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 DOI: https://doi.org/10.1007/s10569-009-9210-9
Schwarz, R., Süli, À. And Dvorac, R. (2009b): Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 DOI: https://doi.org/10.1111/j.1365-2966.2009.15248.x
Simo, C. (1978): Relative equilibrium solutions in the four body problem. Celest. Mech. 18, 165—184 DOI: https://doi.org/10.1007/BF01228714
Singh, J. and Vincent, A.E. (2015): Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 DOI: https://doi.org/10.1007/s10509-015-2487-0
Singh, J. and Vincent, A.E. (2016): Equilibrium points in the restricted four body problem with radiation pressure. Few-Body Syst. 57, 83–91 DOI: https://doi.org/10.1007/s00601-015-1030-8
Singh, J. and Omale, S.O. (2019): Combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability of equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 364, 6 DOI: https://doi.org/10.1007/s10509-019-3494-3
Singh. J. and Taura, J. J. (2013): Motion in the generalized restricted three-body problem, Astrophys. Space Sci. 343, 95–106 DOI: https://doi.org/10.1007/s10509-012-1225-0
Singh, J., Omale, S.O., Inumoh, L. O. and Ale, F. (2020): Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev’s field, Astrodynamics https://doi.org/10.1007/s42064-020-0071-z DOI: https://doi.org/10.1007/s42064-020-0071-z
Suraj, M. S., Aggarwal, R., Asique, M. C. and Mittal, A. (2020): The effect of radiation pressure on the basins of convergence in the restricted four-body problem, Chaos, Solitons & Fractals 141, 110347. DOI: https://doi.org/10.1016/j.chaos.2020.110347
Szebehely, V. (1967): Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-395732-0.50007-6
Taura and Leke (2022): Derivation of the dynamical equations of motion of the R3BP with variable masses and disk. FUDMA Journal of Sciences (FJS) 6 (4): 125 – 133. DOI: https://doi.org/10.33003/fjs-2022-0604-1025
Tyokyaa, K. R. and Atsue, T (2020): Positions and stability of libration points in the radiating and oblating bigger primary of circular restricted three-body problem. FUDMA Journal of Sciences (FJS) 4 (2) :523 – 531 DOI: https://doi.org/10.33003/fjs-2020-0402-185
Vincent, A. E., Taura, J. J. and Omale, S. O. (2019): Existence and stability of equilibrium points in the photogravitational restricted four- body problem with Stokes drag effect, Astrophysics and Space Science 364 (10) DOI: https://doi.org/10.1007/s10509-019-3674-1
Vincent, A. E., Perdiou, A. E. and Perdios, E. A. (2022): Existence and stability of equilibrium points in the R3BP with Triaxial-Radiating primaries and an oblate massless body under the effect of the Circumbinary disc. Front. Astron. Space Sci. 9:877459. DOI: https://doi.org/10.3389/fspas.2022.877459
Vincent, E.A. and Kalantonis, V.S. (2022): Motion around the equilibrium points in the photogravitational R3BP under the effects of Poynting-Robertson drag, circumbinary belt and triaxial primaries with an oblate infinitesimal body: application on Achird binary system. In: Rassias, Th.M., Pardalos, P. (Eds.), Analysis, Geometry, Nonlinear Optimization and Applications, to be published DOI: https://doi.org/10.1142/9789811261572_0029
Copyright (c) 2023 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences