TIME-TO-OPTIMAL CONTROL OF HYPERTENSION USING KAPLAN-MEIER ESTIMATOR, COX PROPORTIONAL HAZARD AND WEIBULL MODEL

Authors

  • Abduljalil Alfa Ismail Federal University Birnin Kebbi
  • Umar Usman
  • Bello Magaji Arkilla
  • Usman Dauda

DOI:

https://doi.org/10.33003/fjs-2022-0605-1096

Keywords:

Hypertension, Time-to-Event, Optimal control, Cox proportional hazard, Weibull model

Abstract

Hypertension is a worldwide public health challenge. The study investigated the time it takes to attain an optimal control of hypertension and the major factors that influence the control in Specialist Hospital, Sokoto.

A retrospective cohort study was conducted involving 300 patient records. The population consisted all hypertensive patients on follow-ups at Specialist Hospital Sokoto from1st February, 2015 to 1st February, 2021.Statistical Package for the Social Sciences version 20 and R software were used for descriptive, Kaplan-Meier estimator, Cox Proportional Regression (CPH) Model and Weibull Regression Model analyses.

Hypertensive patients attain an optimal control after a median survival time of 40.43 (at 95% CI: 33.67- 47.19) months (3.37 years) and mean survival time of 44.18 (CI: 37.24-51.12) months (3.68 years). The CPH analysis revealed that the factors that influenced an optimal control of hypertension were body mass index (BMI) (P <0.001), number of anti-hypertensive drugs (P <0.001), place of residence (P = 0.030). similarly, the Weibull model revealed that the factors that affected an optimal control of hypertension were BMI (P <0.01), number of anti-hypertensive drugs (P <0.001), place of residence (P = 0.042) and educational status (P = 0.036).

In conclusion, BMI, number of anti-hypertensive drugs, Place of residence, Educational status. should be watched out during management of hypertensive patients. This also call for an extension of this study through a prospective design to be able to measure the effect of other factors in the achievement of optimal control of hypertension

References

Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S. and Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Advances, 7(47), 29395-29420.

Adam, R. D. (2018). Antimicrobial resistance at a community level. The Lancet Planetary Health, 2(11), e473-e474.

Baindara, P., Chaudhry, V., Mittal, G., Liao, L. M., Matos, C. O., Khatri, N., Franco, O.L., Patil, P.B. and Korpole, S. (2016). Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrobial agents and chemotherapy, 60(1), 580-591.

Bautista-Gallego, J., Arroyo-Lopez, F., Durán-Quintana, M. and Garrido-Fernandez, A. (2008). Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Journal of Food Protection, 71(7), 1412-1421.

Bhatt, A. P., Redinbo, M. R. and Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA: a cancer journal for clinicians, 67(4), 326-344.

Cebrián, R., Arévalo, S., Rubiño, S., Arias-Santiago, S., Rojo, M. D., Montalbán-López, M., Martínez-Bueno, M., Valdivia, E. and Maqueda, M. (2018). Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme. Scientific Reports, 8(1), 11766.

Crysler, A. and Streu, C. (2022). Directed Evolution of Antibacterial Nanobodies Using Novel Antigen Production Strategies. Faseb j, 36 Suppl 1. doi: 10.1096/fasebj.2022.36.S1.0R324

Denku, C. Y., Ambelu, A. and Mitike, G. (2022). Enteric bacterial pathogens and their antibioticâ€resistant patterns from the environmental sources in different regions of Ethiopia: A laboratoryâ€based crossâ€sectional study. Health Science Reports, 5(2), e521.

Draper, L. A., Cotter, P. D., Hill, C. and Ross, R. P. (2015). Lantibiotic resistance. Microbiology and Molecular Biology Reviews, 79(2), 171-191.

Field, D., O’Connor, R., Cotter, P. D., Ross, R. P. and Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, 508.

Ghosh, C., Sarkar, P., Issa, R. and Haldar, J. (2019). Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends in Microbiology.

Gueimonde, M., Sánchez, B., G. de los Reyes-Gavilán, C. and Margolles, A. (2013). Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 4, 202. doi: https://doi.org/10.3389/fmicb.2013.00202

Guerreiro, J., Monteiro, V., Ramos, C., de Melo Franco, B. D. G., Martinez, R. C. R., Todorov, S. D. and Fernandes, P. (2014). Lactobacillus pentosus B231 isolated from a Portuguese PDO cheese: production and partial characterization of its bacteriocin. Probiotics and antimicrobial proteins, 6(2), 95-104.

Hasan, M. R., Sundaram, M. S., Sundararaju, S., Tsui, K.-M., Karim, M. Y., Roscoe, D., Imam, O., Janahi, M.A., Thomas, E., Dobson, S., Tan, R., Tang, P. and Lopez, A.P. (2020). Unusual accumulation of a wide array of antimicrobial resistance mechanisms in a patient with cytomegalovirus-associated hemophagocytic lymphohistiocytosis: a case report. BMC infectious diseases, 20(1), 1-7.

Hocking, L., Ali, G.-C., d’Angelo, C., Deshpande, A., Stevenson, C., Virdee, M. and Guthrie, S. (2021). A rapid evidence assessment exploring whether antimicrobial resistance complicates non-infectious health conditions and healthcare services, 2010–20. JAC-antimicrobial resistance, 3(4), dlab171.

Huang, D. T., Yealy, D. M., Filbin, M. R., Brown, A. M., Chang, C.-C. H., Doi, Y., Donnino, M.W., Fine, J., Fine, M.J., Fischer, M. A., Holst, J.M., Hou, P.C., Kellum, J.A., Khan, F., Kurz, M.C., Lotfipour, S., LoVecchio, F., Peck-Palmer, O.M., Pike, F., Prunty, H., Sherwin, R.L., Southerland, L., Terndrup, T., Weissfeld, L.A., Yabes, J. and Angus, D.C. (2018). Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. New England Journal of Medicine, 379, 236-249.

Kasuga, G., Tanaka, M., Harada, Y., Nagashima, H., Yamato, T., Wakimoto, A., Arakawa., K., Kawai, Y., Kok, J. and Masuda, T. (2019). Homologous expression and characterization of gassericin T and gassericin S, a novel class IIb bacteriocin produced by Lactobacillus gasseri LA327. Applied and Environmental Microbiology, 85(6), e02815-02818.

Kumar, P., Serpersu, E. H. and Cuneo, M. J. (2018). A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. Science advances, 4(4), eaas8667.

Liasi, S., Azmi, T., Hassan, M., Shuhaimi, M., Rosfarizan, M. and Ariff, A. (2009). Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu. Malaysian Journal of Microbiology, 5(1), 33-37.

Lowy, F. D. (2011). How Staphylococcus aureus adapts to its host. New England Journal of Medicine, 364(21), 1987-1990.

Lynch, S. V. and Pedersen, O. (2016). The human intestinal microbiome in health and disease. New England Journal of Medicine, 375(24), 2369-2379.

MacNair, C. R., Stokes, J. M., Carfrae, L. A., Fiebig-Comyn, A. A., Coombes, B. K., Mulvey, M. R. and Brown, E. D. (2018). Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nature communications, 9(1), 458.

Mataragas, M., Metaxopoulos, J., Galiotou, M. and Drosinos, E. (2003). Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, 64(3), 265-271.

Mathers, A. J., Vegesana, K., German Mesner, I., Barry, K. E., Pannone, A., Baumann, J., Crook, D.W., Stoesser, N., Kotay, S., Carroll, J. and Sifr, C.D. (2018). Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase–producing organisms. Clinical Infectious Diseases, 67(2), 171-178.

Møretrø, T., Aasen, I., Storrø, I. and Axelsson, L. (2000). Production of sakacin P by Lactobacillus sakei in a completely defined medium. Journal of Applied Microbiology, 88(3), 536-545.

Negash, A. W. and Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020. doi: https://doi.org/10.1155/2020/4374891

Salto, I. P., Torres Tejerizo, G., Wibberg, D., Pühler, A., Schlüter, A. and Pistorio, M. (2018). Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats. Scientific Reports, 8(1), 1-12.

Shlaes, D. M. and Bradford, P. A. (2018). Antibiotics—From There to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathogens & Immunity, 3(1), 19.

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bedard, F., Biron, E., Drider, D. and Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), fuaa039, 1-24.

Sulaiman, M.A., Muhammad H.S., Aliyu, M.S., Ibrahim, A., Hussaini, I.M. and Anchau, Z.G. (2020). FUDMA Journal of Sciences, 4(3), 323-327

W.H.O. (2020). The top 10 causes of death. World Health Organization: World Health Organization Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Wang, K., Xiang, L., Kang, L., Miao, L., Li, Q., Li, X., Zhu, J., Wang, Y., Huang, Y. and He, C. (2020). Communicable disease mortality trends and characteristics of infants in rural China, 1996–2015. BMC Public Health, 20(1), 455. doi: 10.1186/s12889-020-08486-y

Wang, Q., Liu, X., Fu, J., Wang, S., Chen, Y., Chang, K. and Li, H. (2018). Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microbial Cell Factories, 17(1), 1-8.

Wayah, S. B. and Philip, K. (2018a). Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electronic Journal of Biotechnology, 35, 39-47.

Wayah, S. B. and Philip, K. (2018b). Pentocin MQ1: a novel, broad-spectrum, pore-forming bacteriocin from Lactobacillus pentosus CS2 with quorum sensing regulatory mechanism and biopreservative potential. Frontiers in Microbiology, 9, 564. doi: https://doi.org/10.3389/fmicb.2018.00564

Wayah, S. B. and Philip, K. (2018c). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial Cell Factories, 17(1), 1-18.

Yu, G., Baeder, D. Y., Regoes, R. R. and Rolff, J. (2016). The more the better? Combination effects of antimicrobial peptides. Antimicrobial agents and chemotherapy, AAC. 02434-02415.

Zhou, J., Pillidge, C., Gopal, P. and Gill, H. (2005). Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International journal of food microbiology, 98(2), 211-217.

Published

2022-11-02

How to Cite

Ismail, A. A., Usman, U., Arkilla, B. M., & Dauda, U. (2022). TIME-TO-OPTIMAL CONTROL OF HYPERTENSION USING KAPLAN-MEIER ESTIMATOR, COX PROPORTIONAL HAZARD AND WEIBULL MODEL. FUDMA JOURNAL OF SCIENCES, 6(5), 71 - 75. https://doi.org/10.33003/fjs-2022-0605-1096