THE SOLUTION OF A MATHEMATICAL MODEL FOR COVID-19 TRANSMISSION AND VACCINATION IN NIGERIA BY USING A DIFFERENTIAL TRANSFORMATION METHOD
DOI:
https://doi.org/10.33003/fjs-2022-0605-1089Keywords:
SIRV, DTM, Runge Kutta, Covid-19, Maple, NigeriaAbstract
In this work, Differential Transform Method (DTM) was employed to obtain the series solution of the SIRV COVID-19 model in Nigeria. The validity of the DTM in solving the model was validated by Maple 21’s Classical fourth-order Runge-Kutta method. The comparison between DTM and Runge- Kutta (RK4) solutions was performed and there was a good correlation between the results obtained by the two methods. The result validates the accuracy and efficiency of the DTM to solve the model
References
Arimieari, L.W., Sangodoyin, A. Y., & Ereoforiokuma, N. S. (2014). Assessment of Surface Water Quality in Some Selected Locations in Port Harcourt, Nigeria. International Journal of Engineering Research and Technology (IJERT), 3(7), 1146-1151. DOI: IJERTV31S07092
Ayers, J. C., George, G., Fry, D., Benneyworth, L., Wilson, C., Auerbach, L . . . Goodbred, S. (2017). Salinization and arsenic contamination of surface water in southwest Bangladesh.Geochemical Transacton, 8(4), 2-23. DOI 10.1186/s12932-017-0042-3
Degbey, C., Makoutode, M., hand Agueh, V. (2011). Health-factors associated with well water quality and prevalence of waterborne diseases in the Municipality of Abomey-Calavi, Benin. Health, 21(1):47-55.
Dibal, H. U & Lar, U. A. (2014). The major lithological structural units in selected areas of northern Nigeria: Some statistics on the distribution of Ca and Mg are appended. Selected papers on hydrogeology: Calcium and Magnesium in groundwater, occurrence and significance for human health. International Association of Hydrogeologists selected papers. Ohio: CRC Press. 106-125.
Dibal, H.U., Schoeneich, K., Lar, U.A., Garba, I., Lekmang, I.C., & Daspan, R.I. (2017). Hydrochemical appraisal of fluoride in groundwater of Langtang area, Plateau State, Nigeria. Global Journal of Geological Sciences 14, 23-39. http://dx:doi.org/10:4314 /gjgs.v14i1.3.
Gagnon, C., Pilote, M., Turcotte,P., & Andre, C. (2017). Metal contamination of the St. Lawrence River following a major release of untreated wastewater. Journal of Xenobiotics, 7(1), 11-18. https://doi.org/10.4081/xeno.2017.7173
Gongden, J. J., & Lohdip, Y. N. (2015). Seasonal variation of the surface water quality of two dams in Plateau State, north central Nigeria. Water Resources Management, 8 (196), 291-305. Doi:10.2495/WRM150251
Heston, D. (2015). Total carbonate hardness in Cumberland valley groundwater, M. Sc. Thesis, A Shippensburg University, USA, 1–22.
Illinois State Water Survey (2018). The sources, distribution, and trends of chloride in the waters of Illinois. Walton, R. K., Samuel,V. P., & Keith, H. (eds). Prairie Research Institute: Illinois. Bulletin B-74.
Jidauna, G. G., Dabi, D. D., Saidu, B. J., Ndabula, C., & Abaje, I. B. (2014b). Chemical water quality assessment in selected location in Jos, Plateau State, Nigeria. Research Journal of Environmental and Earth Sciences 6 (5), 284-291.
Kabunga , N., Hideo, I., Tetsuji, O., & Wataru, N. (2013). Assessment of dissolved heavy metal pollution in five provinces of Zambia. Journal of Environmental Protection, 4(4), 80-85. DOI:10.4236/jep.2013.41b015
Khan, M.M., Umar, R., & Lateh, H. (2010). Study of trace elements in groundwater of Western Uttar Paradesh, India. Scientific Research and Essays, 5(20). 3175-3182.
Kothari,V.,Vij, S., Sharma, S.,& Gupta, N. (2020). Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environmental and Sustainability Indicators 9(13), 1-8. https://doi.org/10.1016/j.indic. 2020.100093
Lar, U., Yenne, E., Ozoji, T., & Jibo, J. (2014). Assessment of some heavy metals distribution and their possible human health risks: A case study of parts of Langtang south area, middle Benue trough, Nigeria. American Journal of Environmental Protection, 3(6-2): 54-65. DOI: 10.11648/j.ajep.s.2014030602.18
Lawal, R. A., Lohdip, Y. N., & Egila, J. N. (2014). Water quality assessment of Kampani River, Plateau State, Nigeria. Asian Review of Environmental and Earth Sciences, 1(2), 30-34.
Maseke, S. A & Vegi, M. A. (2019). A Comparative Study of Water Quality of Spring, Borehole and Stream Waters of Mara, Shinyanga and Manyara Regions of Tanzania. Science Journal of Chemistry, 7(4), 82-89. Doi: 10.11648/j.sjc.20190704.13
Nawab, J., Khan, S., Xiaopinga, W., Rahman, A., Alid, H., Qamar, Z., Ali, Z. K … Ali, I. S. (2017). Spatial distribution of toxic metals in drinking water sources and their associated health risk in buner district, Northern Pakistan. Human and Ecological Risk Assessment https://doi.org/10.1080/10807039.2017.1395684
Raju, N. J., Dey, S., & Das, K. (2019). Fluoride contamination in groundwaters of Sonbhadra District, Uttar Pradesh, India. Current Science, 96, 7-10. doi:10.1016/j.scitotenv .2019.06.038
Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021) Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science 11 (46). 1-20. https://doi.org/10.1007/s13201-021-01376-7
Saidu, B. J., Dabi, D. D., Eziashi, A. C., Abubakar, A. A. Beka, C. N., & Oche, C. Y. (2020). Pollution load and health risk indices of domestic water sources in selected communities of Langtang Area, Plateau state, North-Central Nigeria. African Journal of Geographical Sciences, 1(2), 38 - 49.
Shah, M. T., Ara, J., Muhammad, S., Khan, S., & Tariq, S. (2012). Health risk assessment via surface water and sub-surface water consumption in the maï¬c and ultramaï¬c terrain, Mohmand agency, northern Pakistan. Journal of Geochemical Exploration, 118, 60-70. doi:10.1016/j.gexplo.2012.04.008.
Sharma, M. K., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: an overview. Environmental Monitoring and Assessment, 192(2), 74-82. Doi:10.1007/10661-019-8051-6
SON (2015). Nigerian standard for drinking water quality. Nigerian industrial standard NIS: 556-2015. SON, Abuja.
Sorlini, S., Palazzini, D., & Sieliechi, J. M. (2013). Assessment of physical-chemical drinking water quality in the Logone Valley (Chad-Cameroon). Sustainability, 5(7):3060-76
Toure, A., Wenbiao, D., & Keita, Z. (2017). Comparative study of the physico-chemical quality of water from wells, boreholes and rivers consumed in the commune of pelengana region of Segou in Mali. Environmental Science, 13 (6), 1-13. www.tsijournals.com
USEPA (2012). An introduction to water quality monitoring. United States Environmental Protection Agency, Washington, DC.EPA/630/P-03/001F. Retrieved June 12th 2019 from: http://www.water.epa.gov/type/ watersheds/monitoring/monintr.cfm
Wator, K., & Zdechlik, R. (2021). Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality – case study from the Podhale region (Southern Poland). Ecological Indicators, 121 (2021), 1- 14. https://doi. org /10.1016/j.ecolind.2020.107098
WHO (2011) Guidelines for Drinking Water Quality, 4th ed. vol. 1, Recommendations. Geneva; Author. http://www.who.int
Zhang, J. D., and Li, X. L. (1997). Chromium pollution of soil and water in Jinzhou. Environmental Toxicology, 21, 262–264.
Zhitkovich, A. (2018). Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chemical Research Toxicology, 24, 1617–1629. dx.doi.org/10.1021/tx200251t
Gongden, J. J., & Lohdip, Y. N. (2009). Climate change and dams drying: A case study of three communities in Langtang South of Plateau State, Nigeria. African Journal of Natural Science, 8(12), 37-43. Doi: 10.2495/WRM150251
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences