CROP YIELD PREDICTION USING SELECTED MACHINE LEARNING ALGORITHMS
Abstract
Agriculture is paramount to global food security, and predicting crop yields is crucial for policy and planning. However, predicting these yields is challenging due to the myriad of influencing factors, from soil quality to climate conditions. While traditional methods relied on historical data and farmer experience, recent advancements have witnessed a shift towards machine learning (ML) for improved accuracy. This study explored the application of machine learning (ML) techniques in predicting crop yields using data from Nigeria. Previous efforts lacked transferability across crops and localities; this research aimed to devise modular and reusable workflows. Using data from the Agricultural Performance Survey of Nigeria, this study evaluated the performance of different machine learning algorithms, including Linear Regression, Support Vector Regressor, K-Nearest neighbor, and Decision Tree Regressor. Results revealed the Decision Tree Regressor as the superior model for crop yield prediction, achieving a prediction accuracy of 72%. The findings underscore the potential of integrating ML in agricultural planning in Nigeria where agriculture significantly impacts the economy. Further research is encouraged to refine these models for broader application across varying agroecological zones.
References
Agarwal, S., and Tarar, S. (2021). A hybrid approach for crop yield prediction using machine learning and deep learning algorithms. In Journal of Physics: Conference Series (Vol. 1714, No. 1, p. 012012). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1714/1/012012
Ahmed, A., Adewumi, S. E., and Yemi-peters, V. (2023). Seasonal Crop Yield Prediction in Nigeria Using Machine Learning Technique. Journal of Applied Artificial Intelligence, 4(1), 9-20. DOI: https://doi.org/10.48185/jaai.v4i1.728
Ahmed, I., ur Rahman, M. H., Ahmed, S., Hussain, J., Ullah, A., and Judge, J. (2018). Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Environmental Science and Pollution Research, 25, 28413-28430. DOI: https://doi.org/10.1007/s11356-018-2884-3
Ansarifar, J., and Wang, L. (2019). New algorithms for detecting multi-efect and multi-way epistatic interactions. Bioinformatics, 35, 5078–5085. DOI: https://doi.org/10.1093/bioinformatics/btz463
Atzberger, C., Vuolo, F., Klisch, A., Rembold, F., Meroni, M., Marcio Pupin, M., and Formaggio, A. (2016). Remote Sensing Handbook (Agriculture. In: Thenkabail, P.S. (Ed.)). CRC Press.
Awad, M. (2019). Toward precision in crop yield estimation using remote sensing and optimization techniques. Agriculture, 9(3), 54. DOI: https://doi.org/10.3390/agriculture9030054
Cai, Y., Guan, K., Lobell, D., Potgieter, A. B., Wang, S., Peng, J., Xu, T., Asseng, S., Zhang, Y., and You, L. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol., 274, 144–159. DOI: https://doi.org/10.1016/j.agrformet.2019.03.010
Chipanshi, A., Zhang, Y., Kouadio, L., Newlands, N., Davidson, A., Hill, H., Warren, R., Qian, B., Daneshfar, B., Bedard, F., and Reichert, G. (2015). Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agricultural and Forest Meteorology, 206, 137–150. https://doi.org/10.1016/j.agrformet.2015.03.007 DOI: https://doi.org/10.1016/j.agrformet.2015.03.007
Chlingaryan, A., Sukkarieh, S., and Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review.
Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012 DOI: https://doi.org/10.1016/j.compag.2018.05.012
Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003. DOI: https://doi.org/10.1088/1748-9326/aae159
Cravero, A., Pardo, S., Sepúlveda, S., and Muñoz, L. (2022). Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy, 12(3), 748. DOI: https://doi.org/10.3390/agronomy12030748
Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., and Ravid, G. (2018). Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precision agriculture, 19, 421-444. DOI: https://doi.org/10.1007/s11119-017-9527-4
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Deep Learning. MIT Press.
Retrieved December 3, 2022, from https://www.deeplearningbook.org/
Gopal, P. S. M., and Bhargavi, R. (2019). Performance Evaluation of Best Feature Subsets for Crop Yield Prediction Using Machine Learning Algorithms. Applied Artificial Intelligence, 33(7), 621–642. https://doi.org/10.1080/08839514.2019.1592343 DOI: https://doi.org/10.1080/08839514.2019.1592343
Factors that influence crop yield. (2017). Retrieved from https://www.fertilizer.co.za/en/public-relations/news/2017/259-factors-that-influence-crop-yield
Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D., Pozza, L. E., Ugbaje, S. U., ... and Bishop, T. F. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture, 20, 1015-1029. DOI: https://doi.org/10.1007/s11119-018-09628-4
Javadinejad, S., Eslamian, S., and Ostad-Ali-Askari, K. (2021). The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. International journal of hydrology science and technology, 11(1), 1-25. DOI: https://doi.org/10.1504/IJHST.2021.112651
Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., and Kim, S. H. (2016). Random Forests for Global and Regional Crop Yield Predictions. PLOS ONE, 11(6), e0156571. https://doi.org/10.1371/journal.pone.0156571 DOI: https://doi.org/10.1371/journal.pone.0156571
Khaki, S., Wang, L., and Archontoulis, S. V. (2020). A cnn-rnn framework for crop yield prediction. Front. Plant Sci., 10, 1750. DOI: https://doi.org/10.3389/fpls.2019.01750
Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., and Shearer, S. (2018). Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and electronics in agriculture, 153, 213-225. DOI: https://doi.org/10.1016/j.compag.2018.07.016
Kuradusenge, M., Hitimana, E., Hanyurwimfura, D., Rukundo, P., Mtonga, K., Mukasine, A., ... and Uwamahoro, A. (2023). Crop yield prediction using machine learning models: case of Irish potato and maize. Agriculture, 13(1), 225. DOI: https://doi.org/10.3390/agriculture13010225
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., and Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling andAmp; Software, 84, 494–504. https://doi.org/10.1016/j.envsoft.2016.07.017 DOI: https://doi.org/10.1016/j.envsoft.2016.07.017
MARSWiki, 2020. MARS Crop Yield Forecasting System. https://marswiki.jrc.ec.europa. eu/agri4castwiki/index.php/Welcome_to_WikiMCYFS (Last accessed: May 11, 2020).
Newlands, N. K., Zamar, D. S., Kouadio, L. A., Zhang, Y., Chipanshi, A., Potgieter, A., Toure, S., and Hill, H. S. J. (2014). An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty. Frontiers in Environmental Science, 2. https://doi.org/10.3389/fenvs.2014.00017 DOI: https://doi.org/10.3389/fenvs.2014.00017
Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., and Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187, 103016. https://doi.org/10.1016/j.agsy.2020.103016 DOI: https://doi.org/10.1016/j.agsy.2020.103016
Phalan, B., Green, R., and Balmford, A. (2014). Closing yield gaps: perils and possibilities for biodiversity conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639), 20120285. https://doi.org/10.1098/rstb.2012.0285 DOI: https://doi.org/10.1098/rstb.2012.0285
Ranjan, A. K., and Parida, B. R. (2019). Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spatial Information Research, 27(4), 399-410. DOI: https://doi.org/10.1007/s41324-019-00246-4
Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski, C. A., Myers, D. B., Nafziger, E. D., Sawyer, J. E., and Shanahan,
J. F. (2019). Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 164, 104872. https://doi.org/10.1016/j.compag.2019.104872 DOI: https://doi.org/10.1016/j.compag.2019.104872
Romero, J. R., Roncallo, P. F., Akkiraju, P. C., Ponzoni, I., Echenique, V. C., and Carballido, J. A. (2013). Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires. Computers and Electronics in Agriculture, 96, 173–179. https://doi.org/10.1016/j.compag.2013.05.006 DOI: https://doi.org/10.1016/j.compag.2013.05.006
Shahhosseini, M., Martinez-Feria, R. A., Hu, G., and Archontoulis, S. V. (2019). Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14(12), 124026. https://doi.org/10.1088/1748-9326/ab5268 DOI: https://doi.org/10.1088/1748-9326/ab5268
Taherei Ghazvinei, P., Hassanpour Darvishi, H., Mosavi, A., Yusof, K. B. W., Alizamir, M., Shamshirband, S., and Chau, K. W. (2018). Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 12(1), 738-749. DOI: https://doi.org/10.1080/19942060.2018.1526119
USDA-NASS, 2012. The Yield Forecasting Program of NASS. Technical Report. United States Department of Agriculture (USDA).
Van der Velde, M., Nisini, L., 2019. Performance of the MARS-crop yield forecasting system for the European Union: assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015. Agric. Syst. 168, 203–212. https://doi.org/ 10.1016/j.agsy.2018.06.009. DOI: https://doi.org/10.1016/j.agsy.2018.06.009
Willcock, S., Martínez-López, J., Hooftman, D. A., Bagstad, K. J., Balbi, S., Marzo, A., Prato, C., Sciandrello, S., Signorello, G., Voigt, B., Villa, F., Bullock, J. M., and Athanasiadis, I. N. (2018). Machine learning for ecosystem services DOI: https://doi.org/10.1016/j.ecoser.2018.04.004
Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., Zhu, M., and Wu, X. (2019). Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecological Indicators, 101, 943–953. https://doi.org/10.1016/j.ecolind.2019.01.059 DOI: https://doi.org/10.1016/j.ecolind.2019.01.059
Zhao, Y., Potgieter, A. B., Zhang, M., Wu, B., and Hammer, G. L. (2020). Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 12(6), 1024. https://doi.org/10.3390/rs12061024 DOI: https://doi.org/10.3390/rs12061024
Zhong, H., Li, X., Lobell, D., Ermon, S., and Brandeau, M. L. (2018). Hierarchical modeling of seed variety yields and decision making for future planting plans. Environment Systems and Decisions, 38, 458-470 DOI: https://doi.org/10.1007/s10669-018-9695-4
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences